pub struct Table(/* private fields */);
Expand description
Table
is Perspective’s columnar data frame, analogous to a Pandas
DataFrame
or Apache Arrow, supporting append & in-place updates, removal by
index, and update notifications.
A Table
contains columns, each of which have a unique name, are strongly and
consistently typed, and contains rows of data conforming to the column’s type.
Each column in a Table
must have the same number of rows, though not every
row must contain data; null-values are used to indicate missing values in the
dataset.
The schema of a Table
is immutable after creation, which means the column
names and data types cannot be changed after the Table
has been created.
Columns cannot be added or deleted after creation either, but a View
can be
used to select an arbitrary set of columns from the Table
.
perspective
docs for the Rust API.
perspective
docs for the Rust API.
§Schema and Types
The mapping of a Table
’s column names to data types is referred to as a
schema
. Each column has a unique name and a single data type:
var schema = {
x: "integer",
y: "string",
z: "boolean",
};
const table2 = await worker.table(schema);
from datetime import date, datetime
schema = {
"x": "integer",
"y": "string",
"z": "boolean",
}
table2 = perspective.Table(schema)
let data = TableData::Schema(vec![(" a".to_string(), ColumnType::FLOAT)]);
let options = TableInitOptions::default();
let table = client.table(data.into(), options).await?;
When passing data directly to the crate::Client::table
constructor, the type
of each column is inferred automatically. In some cases, the inference algorithm
may not return exactly what you’d like. For example, a column may be interpreted
as a datetime
when you intended it to be a string
, or a column may have no
values at all (yet), as it will be updated with values from a real-time data
source later on. In these cases, create a table()
with a schema.
Once the Table
has been created with a schema, further update()
calls will
no longer perform type inference, so columns must only include values supported
by the column’s ColumnType
.
§Data Formats
A Table
may also be created-or-updated by data in CSV,
Apache Arrow, JSON row-oriented or JSON
column-oriented formats.
In addition to these core formats, perspective-python
additionally supports
pyarrow.Table
and pandas.DataFrame
objects directly. These formats are
otherwise identical to the built-in formats and don’t exhibit any additional
support or type-awareness; e.g., pandas.DataFrame
support is just
pyarrow.Table.from_pandas
piped into Perspective’s Arrow reader.
crate::Client::table
and Table::update
perform coercion on their input
for all input formats except Arrow (which comes with its own schema and has no
need for coercion).
"date"
and "datetime"
column types do not have native JSON representations,
so these column types cannot be inferred from JSON input. Instead, for columns
of these types for JSON input, a Table
must first be constructed with a
schema. Next, call Table::update
with the JSON input - Perspective’s JSON
reader may coerce a date
or datetime
from these native JSON types:
integer
as milliseconds-since-epoch.string
as a any of Perspective’s built-in date format formats.- JavaScript
Date
and Pythondatetime.date
anddatetime.datetime
are not supported directly. However, in JavaScriptDate
types are automatically coerced to correctinteger
timestamps by default when converted to JSON.
For CSV input types, Perspective relies on Apache Arrow’s CSV parser, and as such uses the same column-type inference logic as Arrow itself.
§Index and Limit
Initializing a Table
with an index
tells Perspective to treat a column as
the primary key, allowing in-place updates of rows. Only a single column (of any
type) can be used as an index
. Indexed Table
instances allow:
- In-place updates whenever a new row shares an
index
values with an existing row - Partial updates when a data batch omits some column.
- Removes to delete a row by
index
.
To create an indexed Table
, provide the index
property with a string column
name to be used as an index:
const indexed_table = await perspective.table(data, { index: "a" });
indexed_table = perspective.Table(data, index="a");
Initializing a Table
with a limit
sets the total number of rows the
Table
is allowed to have. When the Table
is updated, and the resulting
size of the Table
would exceed its limit
, rows that exceed limit
overwrite the oldest rows in the Table
. To create a Table
with a
limit
, provide the limit
property with an integer indicating the maximum
rows:
const limit_table = await perspective.table(data, { limit: 1000 });
limit_table = perspective.Table(data, limit=1000);
§Table::update
and Table::remove
Once a Table
has been created, it can be updated with new data conforming to
the Table
’s schema. Table::update
supports the same data formats as
crate::Client::table
, minus schema.
const schema = {
a: "integer",
b: "float",
};
const table = await perspective.table(schema);
table.update(new_data);
schema = {"a": "integer", "b": "float"}
table = perspective.Table(schema)
table.update(new_data)
Without an index
set, calls to update()
append new data to the end of the
Table
. Otherwise, Perspective allows
partial updates (in-place) using the index
to determine
which rows to update:
indexed_table.update({ id: [1, 4], name: ["x", "y"] });
indexed_table.update({"id": [1, 4], "name": ["x", "y"]})
Any value on a Client::table
can be unset using the value null
in JSON or
Arrow input formats. Values may be unset on construction, as any null
in the
dataset will be treated as an unset value. Table::update
calls do not need
to provide all columns in the Table
’s schema; missing columns will be
omitted from the Table
’s updated rows.
table.update([{ x: 3, y: null }]); // `z` missing
table.update([{"x": 3, "y": None}]) // `z` missing
Rows can also be removed from an indexed Table
, by calling Table::remove
with an array of index values:
indexed_table.remove([1, 4]);
indexed_table.remove([1, 4])
§Table::clear
and Table::replace
Calling Table::clear
will remove all data from the underlying Table
.
Calling Table::replace
with new data will clear the Table
, and update it
with a new dataset that conforms to Perspective’s data types and the existing
schema on the Table
.
table.clear();
table.replace(json);
table.clear()
table.replace(df)
§JSON Input Data
Perspective supports many kinds of input data, including two formats of JSON data: row-oriented and column-oriented data.
§Row Oriented JSON
Row-oriented JSON is in the form of a list of objects. Each object in the list corresponds to a row in the table. For example:
[
{ "a": 86, "b": false, "c": "words" },
{ "a": 0, "b": true, "c": "" },
{ "a": 12345, "b": false, "c": "here" }
]
§Column Oriented JSON
Column-Oriented JSON comes in the form of an object of lists. Each key of the object is a column name, and each element of the list is the corresponding value in the row.
{
"a": [86, 0, 12345],
"b": [false, true, false],
"c": ["words", "", "here"]
}
Implementations§
Source§impl Table
impl Table
Sourcepub async fn get_index(&self) -> Option<String>
pub async fn get_index(&self) -> Option<String>
Returns the name of the index column for the table.
§JavaScript Examples
const table = await client.table("x,y\n1,2\n3,4", { index: "x" });
const index = table.get_index(); // "x"
§Python Examples
table = client.table("x,y\n1,2\n3,4", index="x");
index = table.get_index() # "x"
§Examples
let options = TableInitOptions {index: Some("x".to_string()), ..default() };
let table = client.table("x,y\n1,2\n3,4", options).await;
let tables = client.open_table("table_one").await;
Sourcepub async fn get_client(&self) -> Client
pub async fn get_client(&self) -> Client
Sourcepub async fn get_limit(&self) -> Option<u32>
pub async fn get_limit(&self) -> Option<u32>
Returns the user-specified row limit for this table.
Sourcepub async fn clear(&self) -> ApiResult<()>
pub async fn clear(&self) -> ApiResult<()>
Removes all the rows in the Table
, but preserves everything else including
the schema, index, and any callbacks or registered View
instances.
Calling Table::clear
, like Table::update
and Table::remove
, will
trigger an update event to any registered listeners via View::on_update
.
Sourcepub async fn delete(&self) -> ApiResult<()>
pub async fn delete(&self) -> ApiResult<()>
Delete this Table
and cleans up associated resources, assuming it has no
View
instances registered to it (which must be deleted first).
Table
s do not stop consuming resources or processing updates when they are
garbage collected in their host language - you must call this method to reclaim
these.
§JavaScript Examples
const table = await client.table("x,y\n1,2\n3,4");
// ...
await table.delete();
§Python Examples
table = client.table("x,y\n1,2\n3,4")
// ...
table.delete()
§Examples
let opts = TableInitOptions::default();
let data = TableData::Update(UpdateData::Csv("x,y\n1,2\n3,4".into()));
let table = client.table(data, opts).await?;
// ...
table.delete().await?;
Sourcepub async fn schema(&self) -> ApiResult<JsValue>
pub async fn schema(&self) -> ApiResult<JsValue>
Returns a table’s [Schema
], a mapping of column names to column types.
The mapping of a Table
’s column names to data types is referred to as a
[Schema
]. Each column has a unique name and a data type, one of:
"boolean"
- A boolean type"date"
- A timesonze-agnostic date type (month/day/year)"datetime"
- A millisecond-precision datetime type in the UTC timezone"float"
- A 64 bit float"integer"
- A signed 32 bit integer (the integer type supported by JavaScript)"string"
- AString
data type (encoded internally as a dictionary)
Note that all Table
columns are nullable, regardless of the data type.
Sourcepub async fn make_port(&self) -> ApiResult<i32>
pub async fn make_port(&self) -> ApiResult<i32>
Create a unique channel ID on this Table
, which allows View::on_update
callback calls to be associated with the Table::update
which caused them.
Sourcepub async fn on_delete(&self, on_delete: Function) -> ApiResult<u32>
pub async fn on_delete(&self, on_delete: Function) -> ApiResult<u32>
Register a callback which is called exactly once, when this Table
is deleted
with the Table::delete
method.
Table::on_delete
resolves when the subscription message is sent, not when
the delete event occurs.
Sourcepub fn remove_delete(&self, callback_id: u32) -> ApiFuture<()>
pub fn remove_delete(&self, callback_id: u32) -> ApiFuture<()>
Removes a listener with a given ID, as returned by a previous call to
Table::on_delete
.
Sourcepub async fn remove(
&self,
value: &JsValue,
options: Option<JsUpdateOptions>,
) -> ApiResult<()>
pub async fn remove( &self, value: &JsValue, options: Option<JsUpdateOptions>, ) -> ApiResult<()>
Replace all rows in this Table
with the input data, coerced to this
Table
’s existing [Schema
], notifying any derived View
and
View::on_update
callbacks.
Calling Table::replace
is an easy way to replace all the data in a
Table
without losing any derived View
instances or View::on_update
callbacks. Table::replace
does not infer data types like Client::table
does, rather it coerces input data to the Schema
like Table::update
. If
you need a Table
with a different Schema
, you must create a new one.
§JavaScript Examples
await table.replace("x,y\n1,2");
§Python Examples
table.replace("x,y\n1,2")
§Examples
let data = UpdateData::Csv("x,y\n1,2".into());
let opts = UpdateOptions::default();
table.replace(data, opts).await?;
Sourcepub async fn replace(
&self,
input: &JsValue,
options: Option<JsUpdateOptions>,
) -> ApiResult<()>
pub async fn replace( &self, input: &JsValue, options: Option<JsUpdateOptions>, ) -> ApiResult<()>
Replace all rows in this Table
with the input data, coerced to this
Table
’s existing [Schema
], notifying any derived View
and
View::on_update
callbacks.
Calling Table::replace
is an easy way to replace all the data in a
Table
without losing any derived View
instances or View::on_update
callbacks. Table::replace
does not infer data types like Client::table
does, rather it coerces input data to the Schema
like Table::update
. If
you need a Table
with a different Schema
, you must create a new one.
§JavaScript Examples
await table.replace("x,y\n1,2");
§Python Examples
table.replace("x,y\n1,2")
§Examples
let data = UpdateData::Csv("x,y\n1,2".into());
let opts = UpdateOptions::default();
table.replace(data, opts).await?;
Sourcepub async fn update(
&self,
input: &JsTableInitData,
options: Option<JsUpdateOptions>,
) -> ApiResult<()>
pub async fn update( &self, input: &JsTableInitData, options: Option<JsUpdateOptions>, ) -> ApiResult<()>
Updates the rows of this table and any derived View
instances.
Calling Table::update
will trigger the View::on_update
callbacks
register to derived View
, and the call itself will not resolve until all
derived View
’s are notified.
When updating a Table
with an index
, Table::update
supports partial
updates, by omitting columns from the update data.
§Arguments
input
- The input data for thisTable
. The schema of aTable
is immutable after creation, so this method cannot be called with a schema.options
- Options for this update step - seeUpdateOptions
.
§JavaScript Examples
await table.update("x,y\n1,2");
§Python Examples
table.update("x,y\n1,2")
§Examples
let data = UpdateData::Csv("x,y\n1,2".into());
let opts = UpdateOptions::default();
table.update(data, opts).await?;
Sourcepub async fn view(&self, config: Option<JsViewConfig>) -> ApiResult<View>
pub async fn view(&self, config: Option<JsViewConfig>) -> ApiResult<View>
Create a new View
from this table with a specified ViewConfigUpdate
.
See View
struct.
§JavaScript Examples
const view = await table.view({
columns: ["Sales"],
aggregates: { Sales: "sum" },
group_by: ["Region", "Country"],
filter: [["Category", "in", ["Furniture", "Technology"]]],
});
§Python Examples
view = table.view(
columns=["Sales"],
aggregates={"Sales": "sum"},
group_by=["Region", "Country"],
filter=[["Category", "in", ["Furniture", "Technology"]]]
)
§Examples
use crate::config::*;
let view = table
.view(Some(ViewConfigUpdate {
columns: Some(vec![Some("Sales".into())]),
aggregates: Some(HashMap::from_iter(vec![("Sales".into(), "sum".into())])),
group_by: Some(vec!["Region".into(), "Country".into()]),
filter: Some(vec![Filter::new("Category", "in", &[
"Furniture",
"Technology",
])]),
..ViewConfigUpdate::default()
}))
.await?;
Sourcepub async fn validate_expressions(&self, exprs: &JsValue) -> ApiResult<JsValue>
pub async fn validate_expressions(&self, exprs: &JsValue) -> ApiResult<JsValue>
Validates the given expressions.
§Python Examples
exprs = client.validate_expressions({"computed": '"Quantity" + 4'})
Trait Implementations§
Source§impl FromWasmAbi for Table
impl FromWasmAbi for Table
Source§impl IntoWasmAbi for Table
impl IntoWasmAbi for Table
Source§impl LongRefFromWasmAbi for Table
impl LongRefFromWasmAbi for Table
Source§impl OptionFromWasmAbi for Table
impl OptionFromWasmAbi for Table
Source§impl OptionIntoWasmAbi for Table
impl OptionIntoWasmAbi for Table
Source§impl RefFromWasmAbi for Table
impl RefFromWasmAbi for Table
Source§impl RefMutFromWasmAbi for Table
impl RefMutFromWasmAbi for Table
Source§impl TryFromJsValue for Table
impl TryFromJsValue for Table
Source§impl VectorFromWasmAbi for Table
impl VectorFromWasmAbi for Table
Source§impl VectorIntoWasmAbi for Table
impl VectorIntoWasmAbi for Table
Auto Trait Implementations§
impl Freeze for Table
impl !RefUnwindSafe for Table
impl Send for Table
impl Sync for Table
impl Unpin for Table
impl !UnwindSafe for Table
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> ReturnWasmAbi for Twhere
T: IntoWasmAbi,
impl<T> ReturnWasmAbi for Twhere
T: IntoWasmAbi,
Source§type Abi = <T as IntoWasmAbi>::Abi
type Abi = <T as IntoWasmAbi>::Abi
IntoWasmAbi::Abi
Source§fn return_abi(self) -> <T as ReturnWasmAbi>::Abi
fn return_abi(self) -> <T as ReturnWasmAbi>::Abi
IntoWasmAbi::into_abi
, except that it may throw and never
return in the case of Err
.