C - One-stroke Path Editorial /

Time Limit: 2 sec / Memory Limit: 256 MB

配点 : 300

問題文

自己ループと二重辺を含まない N 頂点 M 辺の重み無し無向グラフが与えられます。
i (1≦i≦M) 番目の辺は頂点 a_i と頂点 b_i を結びます。
ここで、自己ループは a_i = b_i (1≦i≦M) となる辺のことを表します。
また、二重辺は a_i=a_j かつ b_i=b_j (1≦i<j≦M) となる辺のことを表します。
頂点 1 を始点として、全ての頂点を1度だけ訪れるパスは何通りありますか。
ただし、パスの始点と終点の頂点も訪れたものとみなします。

例として、図1のような無向グラフが与えられたとします。

図1:無向グラフの例

このとき、図2で表されるパスは条件を満たします。

図2:条件を満たすパスの例

しかし、図3で表されるパスは条件を満たしません。全ての頂点を訪れていないからです。

図3:条件を満たさないパスの例1

また、図4で表されるパスも条件を満たしません。始点が頂点 1 ではないからです。

図4:条件を満たさないパスの例2

制約

  • 2≦N≦8
  • 0≦M≦N(N-1)/2
  • 1≦a_i<b_i≦N
  • 与えられるグラフは自己ループと二重辺を含まない。

入力

入力は以下の形式で標準入力から与えられる。

N M  
a_1 b_1  
a_2 b_2
:  
a_M b_M  

出力

問題文の条件を満たすパスが何通りあるか出力せよ。


入力例 1

3 3
1 2
1 3
2 3

出力例 1

2

与えられるグラフは以下の図で表されます。

43c0ac53de20d989d100bf60b3cd05fa.png

条件を満たすパスは以下の 2 通りです。

c4a27b591d364fa479314e3261b85071.png

入力例 2

7 7
1 3
2 7
3 4
4 5
4 6
5 6
6 7

出力例 2

1

このテストケースは問題文の例と同じです。

Score : 300 points

Problem Statement

You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges.
Here, a self-loop is an edge where a_i = b_i (1≤i≤M), and double edges are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M).
How many different paths start from vertex 1 and visit all the vertices exactly once?
Here, the endpoints of a path are considered visited.

For example, let us assume that the following undirected graph shown in Figure 1 is given.

Figure 1: an example of an undirected graph

The following path shown in Figure 2 satisfies the condition.

Figure 2: an example of a path that satisfies the condition

However, the following path shown in Figure 3 does not satisfy the condition, because it does not visit all the vertices.

Figure 3: an example of a path that does not satisfy the condition

Neither the following path shown in Figure 4, because it does not start from vertex 1.

Figure 4: another example of a path that does not satisfy the condition

Constraints

  • 2≦N≦8
  • 0≦M≦N(N-1)/2
  • 1≦a_i<b_i≦N
  • The given graph contains neither self-loops nor double edges.

Input

The input is given from Standard Input in the following format:

N M  
a_1 b_1  
a_2 b_2
:  
a_M b_M  

Output

Print the number of the different paths that start from vertex 1 and visit all the vertices exactly once.


Sample Input 1

3 3
1 2
1 3
2 3

Sample Output 1

2

The given graph is shown in the following figure:

43c0ac53de20d989d100bf60b3cd05fa.png

The following two paths satisfy the condition:

c4a27b591d364fa479314e3261b85071.png

Sample Input 2

7 7
1 3
2 7
3 4
4 5
4 6
5 6
6 7

Sample Output 2

1

This test case is the same as the one described in the problem statement.