- 中文名
- 微积分
- 外文名
- Calculus
- 所属学科
- 数学、物理
- 研究内容
- 切线、函数、极限、积分、微分
- 中心思想
- 切线、函数
- 学科特点
- 理论严密、应用广泛
- 积分发明
- 艾萨克·牛顿、莱布尼茨
- 微、积分关系
- 互为逆运算
微积分的基本概念和内容包括微分学和积分学。微分学的主要内容包括:极限理论、导数、微分等。积分学的主要内容包括:定积分、不定积分等。
从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。
设函数 在某区间内有定义, 及 +Δx在此区间内。如果函数的增量 可表示为Δy=AΔx+o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点 是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy=AΔx。
通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx=Δx。于是函数 的微分又可记作 ,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫作微商。 [3]
设Δx是曲线 上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,可以用切线段来近似代替曲线段。
假设 和 都可导,那么复合函数 的微分为: 无论u是自变量还是另一个变量的可微函数,微分形式 保持不变,这也称为微分形式不变性。 [27]
(1)定积分和不定积分
一个函数的不定积分(亦称原函数)指另一组函数,这一组函数的导函数恰为前一函数。
其中:
含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函数,从而出现多元函数的偏导数的方程,称为偏微分方程。
十七世纪以来,微积分的概念和技巧不断扩展并被广泛应用来解决天文学、物理学中的各种实际问题,取得了巨大的成就。但直到十九世纪以前,在微积分的发展过程中,其数学分析的严密性问题一直没有得到解决。十八世纪中,包括牛顿和莱布尼兹在内的许多大数学家都觉察到这一问题并对这个问题作了努力,但都没有成功地解决这个问题。
整个十八世纪,微积分的基础是混乱和不清楚的,许多英国数学家也许是由于仍然为古希腊的几何所束缚,因而怀疑微积分的全部工作。这个问题一直到十九世纪下半叶才由法国数学家柯西得到了完整的解决,柯西极限存在准则使得微积分注入了严密性,这就是极限理论的创立。极限理论的创立使得微积分从此建立在一个严密的分析基础之上,它也为20世纪数学的发展奠定了基础。
注:在中世纪(14—17世纪)欧洲数学大发展的时期,我国基本处于停滞状态(明、清时期)。 [4]
微分符号, , 等,系由莱布尼茨首先使用。其中的“ ”源自拉丁语中“差”(Differentia)的第一个字母。积分符号“ ”亦由莱布尼茨所创,它是拉丁语“总和”(Summa)的第一个字母s的伸长(和 有相同的意义),“ ”为围道积分。 [2]
从微积分成为一门学科来说,是在17世纪,但是积分的思想早在古代就已经产生了。
公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287年~公元前212年)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含着近代积分的思想。
中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分学的思想主要有两点:割圆术及求体积问题的设想。
明朝时,王文素完成了《新集通证古今算学宝鉴》这一数学巨著。王文素在解代数方程上,他比17世纪牛顿、拉夫森早140多年,率先用导数逐步迭代求解,为中国数学史谱写了光辉的篇章;对于17世纪微积分创立时期出现的导数,王文素在16世纪已率先发现并使用。 [26]
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
数学首先从对运动(如天文、航海问题等)的研究中引出了一个基本概念,在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数——或变量间关系——的概念。紧接着函数概念的采用,产生了微积分,它是继欧几里得几何之后,全部数学中的一个最大的创造。围绕着解决上述四个核心的科学问题,微积分问题至少被十七世纪十几个最大的数学家和几十个小一些的数学家探索过。其创立者一般认为是牛顿和莱布尼茨。在此,我们主要来介绍这两位大师的工作。
实际上,在牛顿和莱布尼茨作出他们的冲刺之前,微积分的大量知识已经积累起来了。十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。
例如费马、巴罗、笛卡尔都对求曲线的切线以及曲线围成的面积问题有过深入的研究,并且得到了一些结果,但是他们都没有意识到它的重要性。在十七世纪的前三分之二,微积分的工作沉没在细节里,作用不大的细微末节的推理使他们筋疲力尽了。只有少数几个大数学家意识到了这个问题,如詹姆斯·格里高利说过:“数学的真正划分不是分成几何和算术,而是分成普遍的和特殊的”。而这普遍的东西是由两个包罗万象的思想家牛顿和莱布尼茨提供的。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现时数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
牛顿在1671年写了《流数术和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。
牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。 [5-6]
德国的莱布尼茨(又译“莱布尼兹”)是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一篇说理也颇含糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。
1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现今我们使用的微积分通用符号就是当时莱布尼茨精心选用的。
微积分是能应用于许多类函数的一种新的普遍的方法,这一发现必须归功于牛顿和莱布尼茨两人。经过他们的工作,微积分不再是古希腊几何的附庸和延展,而是一门独立的学科。
历史上,关于微积分的成果归属和优先权问题,曾在数学界引起了一场长时间的大争论。1687年以前,牛顿没有发表过微积分方面的任何工作,虽然他从1665年到1687年把结果通知了他的朋友。特别地,1669年他把他的短文《分析学》送给了他的老师巴罗,后者把它送给了John Collins。莱布尼茨于1672年访问巴黎,1673年访问伦敦,并和一些与牛顿工作的人通信。然而,他直到1684年才发表微积分的著作。于是就发生莱布尼茨是否知道牛顿工作详情的问题,他被指责为剽窃者。但是,在这两个人死了很久以后,调查证明:虽然牛顿工作的大部分是在莱布尼兹之前做的,但是,莱布尼兹是微积分主要思想的独立发明人。
这场争吵的重要性不在于谁胜谁负的问题,而是使数学家分成两派。一派是英国数学家,捍卫牛顿;另一派是欧洲大陆数学家,尤其是伯努利兄弟,支持莱布尼茨,两派相互对立甚至敌对。其结果是,使得英国和欧洲大陆的数学家停止了思想交换。因为牛顿在关于微积分的主要工作和第一部出版物,即《自然哲学的数学原理》中使用了几何方法。所以在牛顿死后的一百多年里,英国人继续以几何为主要工具。而大陆的数学家继续莱布尼兹的分析法,使它发展并得到改善,这些事情的影响非常巨大,它不仅使英国的数学家落后在后面,而且使数学损失了一些最有才能的人应用可作出的贡献。
微积分诞生之后,数学迎来了一次空前繁荣的时期,对18世纪的数学产生了重要而深远的影响,但是牛顿和莱布尼茨的微积分都缺乏清晰的、严谨的逻辑基础,这在初创时期是不可避免的。科学上的巨大需要战胜了逻辑上的顾忌。他们需要做的事情太多了,他们急于去攫取新的成果。基本问题只好先放一放,正如达朗贝尔所说的:“向前进,你就会产生信心!”数学史的发展一再证明自由创造总是领先于形式化和逻辑基础。于是在微积分的发展过程中,出现了这样的局面:一方面是微积分创立之后立即在科学技术上获得应用,从而迅速地发展;另一方面是微积分学的理论在当时是不严密的,出现了越来越多的悖论和谬论。
数学的发展又遇到了深刻的令人不安的危机。例如,有时把无穷小量看作不为零的有限量而从等式两端消去,而有时却又令无穷小量为零而忽略不计。由于这些矛盾,引起了数学界的极大争论。如当时爱尔兰主教、唯心主义哲学家贝克莱嘲笑“无穷小量”是“已死的幽灵”。贝克莱对牛顿导数的定义进行了批判。
当时牛顿对导数的定义为:
当 增长为 时, 的立方(记为 )成为 的立方(记为 ),即 的立方结果为 。 与 的增量分别为 和 。 的增量除以 的增量的结果为 ,然后代入h=0让增量消失,则它们的最后结果为 。我们知道这个结果是正确的,但是推导过程确实存在着明显的偷换假设的错误:在论证的前一部分假设 是不为0的,而在论证的后一部分又被取为0。那么 到底是不是0呢?这就是著名的贝克莱悖论。这种微积分的基础所引发的危机在数学史上称为第二次数学危机,而这次危机的引发与牛顿有直接关系。历史要求给微积分以严格的基础。
补救
第一个为补救第二次数学危机提出真正有见地的意见的是法国数学家达朗贝尔。他在1754年指出,必须用更可靠的理论去代替当时使用的粗糙的极限理论。但是他本人未能提供这样的理论。最早使微积分严格化的是拉格朗日。为了避免使用无穷小推理和当时还不明确的极限概念,拉格朗日曾试图把整个微积分建立在泰勒公式的基础上。但是,这样一来,考虑的函数范围太窄了,而且不用极限概念也无法讨论无穷级数的收敛问题,所以,拉格朗日的以幂级数为工具的代数方法也未能解决微积分的奠基问题。
到了19世纪,出现了一批杰出的数学家,他们积极为微积分的奠基工作而努力,其中包括了捷克的哲学家波尔查诺,他曾著有《无穷的悖论》,明确地提出了级数收敛的概念,并对极限、连续和变量有了较深入的了解。分析学的奠基人,法国数学家柯西在1821—1823年间出版的《分析教程》和《无穷小计算讲义》是数学史上划时代的著作。在那里他给出了数学分析一系列的基本概念和精确定义。
对分析基础做更深一步的理解的要求发生在1874年。那时的德国数学家维尔斯特拉斯构造了一个没有导数的连续函数,即构造了一条没有切线的连续曲线,这与直观概念是矛盾的。它使人们认识到极限概念、连续性、可微性和收敛性对实数系的依赖比人们想象的要深奥得多。黎曼发现,柯西没有必要把他的定积分限制于连续函数。黎曼证明了,被积函数不连续,其定积分也可能存在。也就是将柯西积分改进为黎曼积分。
这些事实使我们明白,在为分析建立一个完善的基础方面,还需要再深挖一步:理解实数系更深刻的性质。这项工作最终由维尔斯特拉斯完成,使得数学分析完全由实数系导出,脱离了知觉理解和几何直观。这样一来,数学分析所有的基本概念都可以通过实数和它们的基本运算表述出来。微积分严格化的工作终于接近封顶,只有关于无限的概念没有完全弄清楚,在这个领域,德国数学家康托尔做出了杰出的贡献。
总之,第二次数学危机和核心是微积分的基础不稳固。柯西的贡献在于,将微积分建立在极限理论的基础上。维尔斯特拉斯的贡献在于逻辑地构造了实数论。为此,建立分析基础的逻辑顺序是实数系——极限论——微积分。
18世纪的分析学
驱动18世纪的微积分学不断向前发展的动力是物理学的需要,物理问题的表达一般都是用微分方程的形式。18世纪被称为数学史上的英雄世纪。他们把微积分应用于天文学、力学、光学、热学等各个领域,并获得了丰硕的成果。在数学本身又发展出了多元微分学、多重积分学、微分方程、无穷级数的理论、变分法,大大地扩展了数学研究的范围。其中最著名的要数最速降线问题:即最快下降的曲线的问题。这个曾经的难题用变分法的理论可以轻而易举的解决。 [7]
微积分学的创立,极大地推动了数学的发展,过去很多用初等数学无法解决的问题,运用微积分,这些问题往往迎刃而解,显示出微积分学的非凡威力。
前面已经提到,一门学科的创立并不是某一个人的业绩,而是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的,微积分也是这样。
不幸的是,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场轩然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展落后了整整一百年。其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼茨早10年左右,但是正式公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。
应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。
直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。
冯·诺依曼:微积分是现代数学的第一个成就,而且怎样评价它的重要性都不为过。我认为,微积分比其他任何事物都更清楚地表明了现代数学的发端;而且,作为其逻辑发展的数学分析体系仍然构成了精密思维中最伟大的技术进展。
阿蒂亚:人们要求降低微积分学在科学教育中的地位,而代之以与计算机研究关系更密切的离散数学的呼声日渐高涨。...许多离散现象的重要结果还是通过使用微积分才得到了最好的证明。直到现在,分析无穷性的微积分学的中心地位仍然是无可争议的。
在多元微积分学中,牛顿-莱布尼茨公式的对照物是德雷克公式、散度定理、以及经典的斯托克斯公式。无论在观念上或者在技术层次上,他们都是牛顿-莱布尼茨公式的推广。随着数学本身发展的需要和解决问题的需要,仅仅考虑欧式空间中的微积分是不够的。有必要把微积分的演出舞台从欧式空间进一步拓展到一般的微分流形。在微分流形上,外微分式扮演着重要的角色。于是,外微分式的积分和微分流形上的斯托克斯公式产生了。而经典的德雷克公式、散度定理、以及经典的斯托克斯公式也得到了统一。
微积分的发展历史表明了人的认识是从生动的直观开始,进而达到抽象思维,也就是从感性认识到理性认识的过程。人类对客观世界的规律性的认识具有相对性,受到时代的局限。随着人类认识的深入,认识将一步一步地由低级到高级、由不全面到比较全面地发展。人类对自然的探索永远不会有终点。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿。
(1)运动中速度与距离的互求问题
已知物体移动的距离 表为以时间为变量的函数 ,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为以时间为变量的函数公式,求速度和距离。这类问题是研究运动时直接出现的,困难在于,所研究的速度和加速度是每时每刻都在变化的。比如,计算物体在某时刻的瞬时速度,就不能像计算平均速度那样,用移动的距离去除运动的时间,因为在给定的瞬间,物体移动的距离和所用的时间是0,而 是无意义的。但是,根据物理,每个运动的物体在它运动的每一时刻必有速度,这也是无疑的。已知速度公式求移动距离的问题,也遇到同样的困难。因为速度每时每刻都在变化,所以不能用运动的时间乘任意时刻的速度,来得到物体移动的距离。
(2)求曲线的切线问题
这个问题本身是纯几何的,而且对于科学应用有巨大的重要性。由于研究天文的需要,光学是十七世纪的一门较重要的科学研究,透镜的设计者要研究光线通过透镜的通道,必须知道光线入射透镜的角度以便应用反射定律,这里重要的是光线与曲线的法线间的夹角,而法线是垂直于切线的,所以总是就在于求出法线或切线;另一个涉及到曲线的切线的科学问题出现于运动的研究中,求运动物体在它的轨迹上任一点上的运动方向,即轨迹的切线方向。
(3)求长度、面积、体积、与重心问题等
这些问题包括,求曲线的长度(如行星在已知时期移动的距离),曲线围成的面积,曲面围成的体积,物体的重心,一个相当大的物体(如行星)作用于另一物体上的引力。实际上,关于计算椭圆的长度的问题,就难住数学家们,以致有一段时期数学家们对这个问题的进一步工作失败了,直到下一世纪才得到新的结果。又如求面积问题,早在古希腊时期人们就用穷竭法求出了一些面积和体积,如求抛物线在区间 上与 轴和直线 所围成的面积 ,他们就采用了穷竭法。当分割的份数越来越多时,所求得的结果就越来越接近所求的面积的精确值。但是,应用穷竭法,必须添上许多技艺,并且缺乏一般性,常常得不到数字解。当阿基米德的工作在欧洲闻名时,求长度、面积、体积和重心的兴趣复活了。穷竭法先是逐渐地被修改,后来由于微积分的创立而根本地修改了。
(4)求最大值和最小值问题(二次函数,属于微积分的一类)
例如炮弹在炮筒里射出,它运行的水平距离,即射程,依赖于炮筒对地面的倾斜角,即发射角。一个“实际”的问题是:求能够射出最大射程的发射角。十七世纪初期,Galileo断定(在真空中)发射角是 时达到最大射程;他还得出炮弹从各个不同角度发射后所达到的不同的最大高度。研究行星的运动也涉及到最大值和最小值的问题。
19世纪下半叶,魏尔斯特拉斯批评柯西等前人采用的“无限地趋近”等说法具有明显的运动学含义,代之以更精密的 表述,重新定义了极限、连续、导数等分析基本概念,本质上使得数学分析达到了今天等严密形式。 [10]后来,戴德金和康托尔分别给出了实数的定义,并在他们各自的实数定义下严格证明了实数系的完备性。 [11]实数的定义及其完备性的确立,标志着由魏尔斯特拉斯倡导的分析算数化运动大致宣告完成。 [12]
19世纪末,分析的严格化迫使许多数学家认真考虑所谓“病态函数”,并研究这样一个问题:积分的概念可以怎样对推广到更一般的函数类上去。勒贝格在1902年发表的博士论文《积分,长度和面积》中利用集合论为基础的测度概念建立了所谓的“勒贝格积分”,使得一些在黎曼意义下不可积的函数按照勒贝格的意义变得可积,并且推广了导数等其他微积分概念,重建了微积分基本定理等微积分事实,从而形成了实变函数论。 [13]然而,人类对于微积分的认识在现代也一直发展着,下面是一些微积分的现代研究。
非标准分析
微分和积分的一般理论,在十七世纪的后半叶中,先由 Newton 提出,稍后由 Leibniz提出,就这门新学科的基础而论,Newton是游移不定的:他有时提到无限小,有时提到极限,有时提到物理直观,Newton的紧密随从者,比较喜欢这最后一个途径。另一方面,Leibniz及其随从者,在一阶和高阶的无限小微分的基础上,发展了微积分理论。他所用的记号,在欧洲大陆上被采用,这些记号的技术优越性在当时促进了微积分的理论和应用在欧洲大陆上迅速发展,但是,不久之后,这个理论的显著的内在矛盾,使人理解到要另打基础。这个问题的满意的解决,来自Cauchy;他第一次严密地发展了数学分析,他的理论建立在极限概念的基础上。到了极限理论确立之后,分析学中的无限小最和无限大量,就再也不受信任而成为一种说话的方式,非阿基米德域的后期发展,其意义完全局限于代数方面。 [14]
非标准分析证明:某些非阿基米德域的理论,确实能够给古典分析学作出积极的贡献。 [15]非标准分析使得无穷小量重新受到尊重,它不同于 的方法,但完全是有生命力的、可行的。由于建立这样一个体系要涉及现代数理逻辑的深奥思想,使得大多数的数学家仍宁愿采用维尔斯特拉斯的观点。 [16]但是,鲁滨逊证明“莱布尼茨的思想能够得到全面的维护”。 [17]
广义函数与分布论
19世纪末,海维赛德在“数学物理中的算子”中引进、使用了没有得到数学证实的算子演算,其中要求对在x=0处间断的海维赛德函数求导。20世纪20年代末,狄拉克在他的量子力学研究工作中直接引入了狄拉克函数。很快,数学家便从纯粹的数学角度指出狄拉克函数是毫无意义的。虽然狄拉克自己也很清楚在经典函数定义下 -函数不是一个函数,但是用它的确能够有效地处理物理学问题。这就显示出原有函数概念的局限性,为数学家推广函数概念提供了动力。 [18]分布是广义函数的泛函定义,它是在物理学和数学自身发展的背景下产生的。1936年,索伯列夫引入了广义函数概念,他称为有限阶连续线性泛函。约十年之后,施瓦兹再次引入了广义函数的泛函定义--分布,并建立了分布理论。这一理论不仅为近现代物理学的研究奠定了基础,而且在数学各分支领域中有着广泛应用,如偏微分方程、群表示论等。 [19]
中国数学家的贡献
在现代微积分的发展当中,中国数学家也做出了很多突出贡献。我国数学家张景中院士,林群院士在著作《直来直去的微积分》中以全新的方式处理微积分,被称为第三代的微积分。 [20]第三代微积分限制在初等数学范围内,避免了说不清道不明的“极限过程”,便于把握和理解。 [21]他们合作建立了不用极限、不用无穷小、也不用实数理论的微积分。并且基本理论的建立和论证都是严谨和自封的。 [22]
值得注意的是,我国数学家丁小平先生自2009年开始系统整理自己三十余年的微积分研究成果,用铁的证据和严密的逻辑指出了现行微积分原理的错误,并从工科和理科两个层面重建了更为科学的新微积分原理。 [23]丁小平先生修正了实数和点的规定性,从而形成了作为数学前提的新的量—形模型;构造了以“变化”(Werden)为核心的微积分体系,并在此基础上重新定义了微分、导数、原函数和积分等概念,重新构造了微积分原理。 [24]“业已重建的微积分原理证明莱布尼茨的思路是完全正确的。” [25]
(1)非编程系列:
casioMS系列:
fx-100MS、fx-115MS、fx-570MS、fx-991MS系列;
ES系列(自然书写显示):
fx-115ES、fx-570ES、fx-991ES系列;
ES PLUS系列(自然书写显示):
fx-115ES PLUS、fx-570ES PLUS、fx-991ES PLUS、fx-991ES PLUS C、fx-991cn x系列。
(2)可编程系列:
fx-3650p、fx-3950p、fx-4800p、fx-5800p、fx-7400G、fx-9750G、fx-9860G以及其升级版本。