Figure 1: Periodic change of the chaotic attractor of the Duffing oscillator for \(\alpha=1\ ,\) \(\beta=-1\ ,\) \(\delta=0.2\ ,\) \(\gamma=0.3\ ,\) and \(\omega=1\ .\) By assembling the Poincaré sections of a trajectory for different phase \(\psi \equiv \omega t \mbox{ mod } 2 \pi\ ,\) the attractor of Duffing oscillator changes periodically (see also Figure 1). Duffing oscillator is an example o
çµµã¨åç»ã§è¦ãã«ãªã¹ ãçµµã¨åç»ã§è¦ãã«ãªã¹ãããã ãã®ã»ã¯ã·ã§ã³ã¯ã±ã³ããªãã¸å¤§ã®åèªå®¢å¡ææ (Honorary Fellow) ã§ãã J.M.T. Thompson ææããæä¾ãããè³æã«åºã¥ãã¦ãã¾ãã(è±èªã®ã¿) ã«ãªã¹åç» ã«ãªã¹ã®åç»ã§ãã ããã£ã³ã°æ¹ç¨å¼ (è»éï¼ã¢ãã©ã¯ã¿ã¼) ããã£ã³ã°æ¹ç¨å¼ (ã¢ãã©ã¯ã¿ã¼ã®ã¿) Fractal Basin Erosion ã«ãªã¹æ¯ãååç» ã«ãªã¹ã¢ãã¡ã¼ã·ã§ã³ å¨æçã«å¤åããã«ãªã¹ã¢ãã©ã¯ã¿ã¼ãã¢ãã¡ã¼ã·ã§ã³ã«ãã¦ã¿ã¾ããã å¼·å¶æ¯ãåã®ã¢ãã©ã¯ã¿ã¼ å¼·å¶æ¯ãåã®ã¢ãã©ã¯ã¿ã¼ï¼ ããã£ã³ã°æ¹ç¨å¼ ãã¼ã¬ã³ãã¢ãã©ã¯ã¿ã¼ Scholarpedia ã®ã¬ã¹ã©ã¼ã¢ãã©ã¯ã¿ã¼ã«ã¤ãã¦ã®è§£èª¬ã«ã¦ã ç§ãä½æããã¬ã¹ã©ã¼ã¢ãã©ã¯ã¿ã¼ã®ã¢ãã¡ã¼ã·ã§ã³ãè¦ããã¨ãã§ãã¾ãã Scholarpediaã®ãã¡ã³ã»ãã«ã»ãã¼ã«æ¯ååã«ã¤ãã¦ã®è§£èª¬
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}