ããã°ãã¼ã¿ã®è¡æâ巨大ãªãã¼ã¿ãæ¦ç¥ã決ãã ã¨ããæ¬ãèªã¿ã¾ããã ããã°ãã¼ã¿ã¨ã¯ä½ããã©ã®ããã«ä½¿ããã¦ããã®ãããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã¨ã¯ãã¨ãã£ããã¨ãäºä¾ã¨å ±ã«ã¨ã¦ãåããããã説æããã¦ãããå ¥éè ã¬ãã«ã®ç§ã§ãç解ã§ãã¾ããã photo credit: JD Hancock via photopin cc ãã®ãªãã§åºã¦ããã²ã¨ã¤ã®ã¯ã¼ããããã«ã¤ãã¦ããããããªã¼ã¨æã£ãã®ã§åãä¸ãã¦ã¿ããã¨æãã¾ãã ããã¼ã¿ã¢ã°ãªã²ã¼ã¿ã¼ã ã¾ã ãã¾ããªãã¿ã®ãªãè¨èãããããªããããã¼ã¿ã¢ã°ãªã²ã¼ã¿ã¼ã¨ã¯ãæ¶è²»è ã¨ãã¼ã¿æ´»ç¨äºæ¥è ã®éã«å ¥ãããã¼ã¿ã®åéãåæãæé©åãå®æ½ãããã®ãã¼ã¿ãäºæ¥è ã«æä¾ããä¸éäºæ¥è ã®ãã¨ã§ãã ã¯ãã¯ãããã¨ã¢ã¤ãã£ã¼ãº å ·ä½çãªäºä¾ã¨ãã¦ã¯ãã¯ãããã¨ã¢ã¤ãã£ã¼ãºã®è©±ãããããã¦ãã¾ããã æ¥æ¬æ大ã®ã¬ã·ããµã¤ãã§ããã¯ãã¯ãããã¨ãå ¨å½ã®ã¹
æ¥æ¬äºº3人ãã·ãªã³ã³ãã¬ã¼ã§èµ·æ¥ããããã¬ã¸ã£ã¼ãã¼ã¿ãã¯ããã¼ã¿ã®åéã»ä¿ç®¡ã»åæãä¸è²«ãã¦è¡ãã¯ã©ã¦ãã»ã½ãªã¥ã¼ã·ã§ã³ãTreasure Data Serviceããã¨ã³ã¿ã¼ãã©ã¤ãºåãã«æä¾ããä¼æ¥ã ãåæ£å¦çãè¡ãããã«ã¦ã§ã¢ãHadoopããèªç¤¾éçºã®ãã¼ã¿ãã¼ã¹ãçµã¿åããããã©ãããã©ã¼ã ã¯ãç´ æ©ãå®è£ ã¨æ¡å¼µæ§ãå®å®æ§ãè©å¤ãå¼ã³ãåµæ¥ããç´3å¹´ã§100社以ä¸ã«å°å ¥ããã¦ããã ããã°ãã¼ã¿ã¨ããè¨èã¯ãã¸ãã¹ç¨èªã¨ãã¦å®çªã¨ãªãã¤ã¤ãããããã¼ã¿ã®ç®¡çã®è² æ ã大ãããªã©ããã«ã«æ´»ç¨ã§ãã¦ããä¼æ¥ã¯ã¾ã å°ãªããä¸çã§ã注ç®ãããã¹ã¿ã¼ãã¢ããã®1ã¤ã§ããå社ãçããåµæ¥è ã®1人ãCTOã®å¤ªç°ä¸æ¨¹ããã«ããã°ãã¼ã¿ãã¸ãã¹ã®ä»å¾ã®å±æãªã©ã«ã¤ãã¦èããã ãã¼ã¿è§£æããã£ã¨ã·ã³ãã«ã« ãTreasure Data Serviceãã®å°å ¥å ã¯ç¾å¨120社ç¨åº¦ããã®ãã¡ç´4å²ãæ¥æ¬
ããã°ãã¼ã¿æ´»ç¨ãã¤ããã¼ã·ã§ã³ãçãéµã®ä¸ã¤ã¨æå¾ ããã¦ããã ã¯ã©ã¦ããå©ç¨ãã¦å¤§éã®ãã¼ã¿ãåéã ãã®åæã«ãããã¸ãã¹ã«ã¨ã£ã¦ä¾¡å¤ããæ å ±ãå¾ãã ãã®ã¨ãéè¦ã«ãªãã®ã人æãçµç¹ã¥ããã«é¢ãã ããã¸ã¡ã³ãã®å½¹å²ã§ããã ããã°ãã¼ã¿æ´»ç¨ã®ããã«ããã¸ã¡ã³ãã¯ä½ããã¹ããªã®ãã èãæ¹ãåãçµã¿æ¹ãããã»ã¹ã5åã«ããã£ã¦è§£èª¬ãã¾ãã ï¼1ï¼ããã°ãã¼ã¿æ´»ç¨ã¨ãã¸ãã¹ã®å¤å ï¼ã³ããã§èµ·ãã£ããã¨ï¼ ååã¯åå´æ¸©æ³ã®äºä¾ãããããã°ãã¼ã¿æ´»ç¨ã®æ¬è³ªãæããã«ããããã«ãã®æ´»ç¨ãé²ããã«ã¯ç®çã®æ確åãããã¸ã¡ã³ããåç»ããææ決å®ã¨æ´»ç¨å¹æã®æ¤è¨¼ãéè¦ã§ããã¨ãã話ããã¾ããã ã§ã¯ãããã°ãã¼ã¿æ´»ç¨ã§ãã¸ãã¹ã¯ã©ã®ããã«å¤ããã®ã§ããããããã«é¢ãã¦ãç´ æ´ãããäºä¾ãããã¾ãã建è¨æ©æ¢°å¤§æã®ã³ããã§ããå社ã®å»ºè¨ æ©æ¢°ã«ã¯ãè»ä¸¡ã®ç¶æ ã稼åç¶æ³ããã§ãã¯ããã»ã³ãµã¼ãGPSè£
ç±³ã»ã¼ã«ã¹ãã©ã¼ã¹ã»ãããã³ã ã¯ãã³ãã£ã¼ä¼æ¥ã«å¯¾ããæè³ãæ´»çºã ã2014å¹´10æ13æ¥ãã16æ¥ï¼ç¾å°æéï¼ã«ç±³ã»ãµã³ãã©ã³ã·ã¹ã³ã§éå¬ãããå社ã®ã¤ãã³ããDreamforce 2014ãã§çºè¡¨ããããã¼ã¿åæãã©ãããã©ã¼ã ã®ãWAVEãã«ããå社ãè²·åããä¼æ¥ãéçºã«é¢ãã£ã¦ããã¨ããï¼é¢é£è¨äºï¼ã»ã¼ã«ã¹ãã©ã¼ã¹ããåæã¯ã©ã¦ããæå ¥ãDWHã¨BIãã¼ã«ãä¸ä½åãã¦æä¾ï¼ãæ¥æ¬ã§ãå¤ãã®BtoBãã³ãã£ã¼ã«åºè³ãã¦ããããã®ä¸ããç±³å½ã«é²åºããä¼æ¥ãç¾ãããå社ã®æè³æ¡ä»¶ã«é¢ããExecutive Vice PresidentãCorporate Development ï¼ Salesforce Venturesã®ã¸ã§ã³ã»ã½ã¢ã«ã¸ã£ã¤æ°ã«èããã
#ä»åã¯ç¥è²¡ã§ã¯ãªãç´ç²ã«ITã®è©±ã§ãããªããSoftbankã®CMã¨ãé¢ä¿ããã¾ããã ãã¼ã¿ã¦ã§ã¢ãã¦ã¹ãæ§ç¯ããä¸ã§éè¦ãªå¦çã«ETLï¼Extract Transformation Loadï¼ãããã¾ããæåéãããã¼ã¿ã½ã¼ã¹ã®ã·ã¹ãã ãããã¼ã¿ããæ½åºããããå¤æããããã¼ã¿ã¦ã§ã¢ãã¦ã¹ã«ããã¼ããããå¦çã®ãã¨ã§ãã ãå¤æãå¦çã§ã¯ãè¤æ°ã½ã¼ã¹ã®ãã¼ã¿ãçµ±åãã¦ããã¼ã¿ã®å½¢å¼ãããããããä¸æ£ãã¼ã¿ãæé¤ããããã¾ãããããããã¼ã¿ã»ã¯ã¬ã³ã¸ã³ã°ï¼æ´æµï¼ã¨å¼ã°ããå¦çã§ããããã«ãã£ã¦ãã¼ã¿ã¦ã§ã¢ãã¦ã¹ã«ãã¼ãããããã¼ã¿ã®å質ãåä¸ã§ãã¾ãã ããããããã°ãã¼ã¿ã®ä¸çã§ã¯ãã®ãã¼ã¿æ´æµããã¦ãããã¼ãããã¨ããèãæ¹ãå¿ ãããé©åã§ã¯ãªããªã£ã¦ãã¾ãããã¼ã¿å質ã¨ã¯ä¸ç¾©çã«æ±ºã¾ããã®ã§ã¯ãªããåæã®æèã«ãã£ã¦å¤ãã£ã¦ããããã§ãããã¼ã¿ç®¡çè ã§ã¯ãªããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ã
å æ¥ãæå¿ã§éã¾ã£ã¦ãBigQuery Analyticsãã¨ããæ¸ç±ã®èªæ¸ä¼ããã£ãããã®åã®éã Google BigQuery ã«ã¤ãã¦æ¸ãããæ´æ¸ã BigQuery ãæè¿ä»äºã§ä½¿ãå§ããã®ã ããBigQuery ãéçºãããèæ¯ã¨ãã¢ã¼ããã¯ãã£ã¼ã¨ããã¾ã調ã¹ãããã«ä½¿ãå§ããã®ã§ä»æ´ãªãããã®è¾ºã®ã¤ã³ããããå¢ããã¦ä»¥éã¨æã£ã次第ã ããã§ãèªæ¸ä¼ã®ç¬¬1åç®ã¯æ¸ç±ã®ä¸ã§ã Overview ã«ç¸å½ããã¨ãããä¸å¿ã«èªã¿åããã¦ãã£ããããã ãã§ããªããªãã«é¢ç½ãã£ãã®ã§å°ãããã°ã«ã§ãæ¸ãã¦ã¿ããããªã¨æãã BigQuery ã®è©±ãã®ãã®ãé¢ç½ãããå人çã«ã¯ Google ã®ã¤ã³ãã©ãæ¸ç±ãGoogle ãæ¯ããæè¡ãã§è§£èª¬ããããã®ã "Big Data Stack 1.0" ã ã¨ãã¦ãBigQuery 㯠Big Data Stack 2.0 ã®ä¸ã«æ§ç¯ããã¦ãã
This blog post is authored by Chris Burges , Principal Research Manager at Microsoft Research, Redmond. Hi, Iâm Chris Burges. Over my last 14 years at Microsoft, and my previous 14 at Bell Labs, Iâve spent much of my time dabbling with machine learning (ML), with some of that time spent on solving industrial strength problems. Since interest in ML, especially in industrial settings, has blossomed
3. ä¼ç¤¾ç´¹ä» æ ªå¼ä¼ç¤¾  Preferred  Infrastructure lï¬â¯ ç¥ï¥¶ç§°  PFI lï¬â¯ 代表è â»è¥¿å·  徹 lï¬â¯ è¨â½´ç«ï§·  2006å¹´ï¦3â½æ lï¬â¯ 社å¡æ° 26å lï¬â¯ æå¨å° ã113-âââ0033  æ±äº¬é½â½æ京åºæ¬é·2-âââ40-âââ1 lï¬â¯ äºæ¥æ¦è¦ lï¬â¯ æ¤ç´¢ï¥ª/åæåéã§ã®è£½åéçº,  販売,  ãµã¼ãã¹æä¾ lï¬â¯ ⼤大è¦æ¨¡åæ£åæã¨ã³ã¸ã³ã®å ±åç 究éçº æå 端ã®æè¡ãæç路路ã§å®â½¤ç¨å ãªãµã¼ãã¨ã¨ã³ã¸ãã¢ãªã³ã°ã®èå ä¸ã®ä¸ã«å¿ è¦ã¨ãããä¸ã§ç¹ã«éè¦ã§å°é£ãªèª²é¡ã«å¯¾ã解ãæä¾ 3 4. Preferred  Infrastructure ã¡ã³ãã¼æ§æ lï¬â¯ ãã«ã¿ã¤ã 26â¼äººä¸23â¼äººãã¨ã³ã¸ãã¢/ç 究è lï¬â¯ 以ä¸ã®æ å ±/ç理/⼯工å¦å⼠士 lï¬â¯ â¾èªç¶â¾è¨èªå¦ç理/æ©æ¢°å¦ç¿/è¨ç®é量ç理è«ï¥/ãã¼ã¿ãã¤ãã³ã°/
From Fluentd Meetupã«è¡ã£ã¦ãã¾ãã ãããèªãã æãBigQueryã®æ¤ç´¢ã¹ãã¼ãã«ã¤ãã¦ã¡ãã£ã¨è£è¶³ããããªã£ãã確ãã«Fluentd Meetupã®ãã¢ã§ã¯9å件ã7ç§ç¨åº¦ã§æ¤ç´¢ãã¦ããããBigQueryã®çã®å®åã¯ãããã1ã2ã±ã¿ä¸ã ããã ãã¡ãã£ã¨æå ã§å°ã大ããã®ãã¼ãã«ã§è©¦ãã¦ã¿ããã120åè¡ã®æ£è¦è¡¨ç¾ãããä»ãéè¨ã5ç§ã§å®äºãããè«ãã証æ ã§ããã¢ãããªï¼1å16ç§ï¼ãä½ã£ã¦ã¿ãï¼ From The Speed of Google BigQuery ããã¯éããããä½ãã®ã¤ã³ããã§ããï¼æåã«ãã¢ãè¦ãæããæã£ãï¼ãæ£è¦è¡¨ç¾ãããããå¤ãã¦ã¿ã¦ãã¹ãã¼ãã¯å¤ãããªããã¤ã¾ããã¤ã³ããã¯ã¹ãäºåæ§ç¯ã§ããªãã¯ã¨ãªã«å¯¾ãã¦ãã®ã¹ãã¼ããªã®ã§ããã ä¾¡æ ¼ãå®ãããããã«120åè¡ã®ã¯ã¨ãªã¯1åã§200åãããã£ã¦æ°è»½ã«å®è¡ã§ããªãããã§ãããã1.2å
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}