エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
Courseraの機械学習ネタの続き。今回はロジスティック回帰をやってみます。回帰と付くのになぜか分類の... Courseraの機械学習ネタの続き。今回はロジスティック回帰をやってみます。回帰と付くのになぜか分類のアルゴリズム。以前、PRMLの数式をベースにロジスティック回帰(2010/4/30)を書いたけど今回はもっとシンプル。以下の3つの順にやってみたいと思います。 勾配降下法によるパラメータ最適化 共役勾配法(2014/4/14)によるパラメータ最適化(学習率いらない!速い!) 正則化項の導入と非線形分離 ロジスティック回帰は線形分離だけだと思ってたのだけど、データの高次の項を追加することで非線形分離もできるのか・・・ 使用したデータファイルなどはGithubにあります。 https://github.com/sylvan5/PRML/tree/master/ch4 勾配降下法によるパラメータ最適化 2クラスのロジスティック回帰は、y=0(負例)またはy=1(正例)を分類するタスク。ロジステ