Next: Introduction Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I John McCarthy, Massachusetts Institute of Technology, Cambridge, Mass. 1 April 1960
Lambda calculus (also written as λ-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. Untyped lambda calculus, the topic of this article, is a universal model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo
ã¢ããã®ãã¹ã¦ Haskell ã«ãããã¢ããããã°ã©ãã³ã°ã®çè«ã¨å®è·µã«é¢ããå æ¬çã¬ã¤ã Version 1.1.0 ãã®ãã¥ã¼ããªã¢ã«ã¯ãã¢ããã®æ¦å¿µã¨ãã®é¢æ°ããã°ã©ãã³ã°ã«ãããå¿ç¨ã« ã¤ãã¦ãåä¸ç´ã® Haskell ããã°ã©ãã«ãããããããå©ç¨ä¾¡å¤ããããã㪠解説ããããã¨ãæ¨ã¨ãã¦ãã¾ããèªè 㯠Haskell ã«ãªãã¦ãããã¨ãåæ㨠ãã¾ãããã¢ããã«é¢ããçµé¨ã¯è¦æ±ãã¦ãã¾ããããã®ãã¥ã¼ããªã¢ã«ã¯ãå¤ ãã®é¡æãã«ãã¼ãã¦ãã¾ããå¾åã®ã»ã¯ã·ã§ã³ã§ã¯ãååã®é¡æãããç解ã ã¦ãããã¨ãåæã¨ãã¾ããé ããã£ã¦ãã¢ããããã°ã©ãã³ã°ãä¾ç¤ºãããã ã®ãµã³ãã«ã³ã¼ããããããç¨æããã¦ãã¾ããä¸èªã§ããã¹ã¦ã®é¡æãå¸åã ããã¨ããã®ã¯ãå§ãã§ãã¾ããã ãã®ãã¥ã¼ããªã¢ã«ã¯ 3 ã¤ã®é¨åã§æ§æããã¦ãã¾ããæåã®é¨åã¯ã é¢æ°ããã°ã©ãã³ã°ã«ãããã¢ããã®åºæ¬ç
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}