import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)
è¨ç®æ©ã«ããèªå¾çãªå¦ç¿ãç®æãæ©æ¢°å¦ç¿ã, 大è¦æ¨¡æ å ±æºããã®ç¥èçºè¦ãå®ç¾ãããã¼ã¿ãã¤ãã³ã°ã®çè«ã«ã¤ãã¦, æ師ä»ãå¦ç¿, æ師ãªãå¦ç¿ãä¸å¿ã«ç解ãã.
.app 1 .dev 1 #11WeeksOfAndroid 13 #11WeeksOfAndroid Android TV 1 #Android11 3 #DevFest16 1 #DevFest17 1 #DevFest18 1 #DevFest19 1 #DevFest20 1 #DevFest21 1 #DevFest22 1 #DevFest23 1 #hack4jp 3 11 weeks of Android 2 A MESSAGE FROM OUR CEO 1 A/B Testing 1 A4A 4 Accelerator 6 Accessibility 1 accuracy 1 Actions on Google 16 Activation Atlas 1 address validation API 1 Addy Osmani 1 ADK 2 AdMob 32 Ads
æ©æ¢°å¦ç¿ã®ã¨ãã»ã³ã¹ -å®è£ ããªããå¦ã¶Python,æ°å¦,ã¢ã«ã´ãªãºã - (Machine Learning) ä½è : å è¤å ¬ä¸åºç社/ã¡ã¼ã«ã¼: SBã¯ãªã¨ã¤ãã£ãçºå£²æ¥: 2018/09/21ã¡ãã£ã¢: åè¡æ¬ãã®ååãå«ãããã°ãè¦ãçºå£²ããã¦ããã ãã¶çµã¡ã¾ãããæ§æ³æ®µéã®é ããèè ã®ãã¯ãããããããã¨å è¤å ¬ä¸ããããã話ã伺ã£ã¦ãã¦æ³¨ç®ãã¦ãããã¡ãã®ä¸åãããããä¸éãèªã¿ã¾ããã®ã§ããµã¯ãã¨æ¸è©ãããä½ããæ¸ãã¦ã¿ãããã¨æãã¾ãã åç« ã®æ¦è¦ è¨ãã¾ã§ããªãå®éã®å 容ã¯çæ§ãèªèº«ã§ãèªã¿ããã ãããã®ã§ãããããã¾ã§ã®æ¸è©è¨äºåæ§ã«æ¦è¦ãç°¡åã«ã¾ã¨ãã¦ããã¾ãã 第01ç« ãå¦ç¿ãå§ããåã« Pythonç°å¢ãAnacondaã®ã¤ã³ã¹ãã¼ã«ã«ã¤ãã¦ã®èª¬æããªããã¦ãããã§ãããéè¦ãªã®ã¯å¾è¿°ãããæ¬æ¸ã¯ä½ãå«ã¾ãªãããã¨ããç¯ãããã«æ¬æ¸ã®çãã®å ¨ã¦ãæ¸ããã¦ããã¨è¨ã£ã¦
ãã¦ãæ¹ãã¦ä»åã®ç®çã確èªãã¦ããã¨ãæ©æ¢°å¦ç¿ã使ã£ã¦æ±äº¬é½23åºã®ãè²·ãå¾è³è²¸ç©ä»¶ãçºè¦ããããã¨ãããã®ã§ããååã¾ã§ã®è¨äºã§ããè²·ãå¾è³è²¸ç©ä»¶ãçºè¦ããããã®ãã¼ã¿ãåéããåæã«ãããããããåå¦çãã¦ãã¾ããã www.analyze-world.com www.analyze-world.com ä»åã®è¨äºã§ã¯ãããããæ©æ¢°å¦ç¿ã使ã£ã¦åæãã¦ããã¾ããããååã¾ã§ã¯Pythonã使ã£ã¦ãã¾ãããããã®åæã§ã¯Rãç¨ãã¦ãã¾ãããªããã³ã¼ãã¯GitHubï¼https://github.com/ShoKosaka/Suumoï¼ã«ä¸ãã¦ããã¾ãã®ã§èå³ããæ¹ã¯åç §ãã ããã æåã«ããã¼ã¿ã®ä¸èº«ããã£ããè¦ã¦ããã¾ããå ·ä½çã«ã¯ãåæã®ãã¼ã«ãªããã¤ã³ããã°ã©ãã«ããªãããè³è²¸ç©ä»¶ã®ç¾ç¶ãå¤æ°å士ã®é¢ä¿æ§ãææ¡ãã¦ããã¾ãã ãã¼ã¿æ¢ç´¢ ã¾ãã23åºã®ä¸ã§ã©ããç©ä»¶æ°ãå¤ãã®ãã
ã¯ããã« æ¢ã«ãæ°ã¥ãã§ãããããç§ãã¡2lemetryã¯Amazonã®ææ°AWS製åã§ããLambdaã«è奮ãæãããã¾ãããLambdaãMQTTãããã³ã«ï¼è¨³è 注ï¼pub/subã¢ãã«ã«åºã¥ã軽éãªã¡ãã»ã¼ã¸ããã [â¦]ã¯ããã« æ¢ã«ãæ°ã¥ãã§ãããããç§ãã¡2lemetryã¯Amazonã®ææ°AWS製åã§ããLambdaã«è奮ãæãããã¾ãããLambdaãMQTTãããã³ã«ï¼è¨³è 注ï¼pub/subã¢ãã«ã«åºã¥ã軽éãªã¡ãã»ã¼ã¸ãããã³ã«ï¼ãThingFabricï¼è¨³è 注ï¼2lementry社ã®IoTãã©ãããã©ã¼ã ï¼ã¨å ±ã«ã©ã®ããã«ç¨¼åããããæã社ã®æ°åã®ã¨ã³ã¸ãã¢ãæ¤è¨¼ãã¾ãããç§ããIoTï¼ã¢ãã®ã¤ã³ã¿ã¼ãããï¼ã«ããã¦Lambdaå ã§ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ãã©ã®ããã«æ©è½ããã®ãã確ããããããå®éã«ä½¿ç¨ãã¦ã¡ãã£ã¨ããå®é¨ãè¡ã£ã¦ã¿ããã¨ã«ãã¾ãããç§ãã¡ã®CEOã§ã
ãã¥ã¼ã¹ã¢ããªSmartNews(https://www.smartnews.be/)ã®èæ¯ã®ã¢ã«ã´ãªãºã ã«ã¤ãã¦TokyoWebMining30th(http://tokyowebmining30.eventbrite.com/)ã§è©±ããã¦ããã ããéã®è³æã§ãã â¢SmartNews iphoneç: https://itunes.apple.com/jp/app/id579581125 â¢SmartNews Androidç https://play.google.com/store/apps/details?id=jp.gocro.smartnews.android â¢SmartNewséçºè ããã° http://developer.smartnews.be/blog/Read less
2. â¾èªâ¼°å·±ç´¹ä» lï¬â¯ æµ·éâãè£ä¹ (@unnonouno) lï¬â¯ ããªãã¡ã¼ãã¤ã³ãã©ã¹ãã©ã¯ãã£ã¼ lï¬â¯ æ å ±æ¤ç´¢ï¥ªãã¬ã³ã¡ã³ã lï¬â¯ æ©æ¢°å¦ç¿ã»ãã¼ã¿è§£æç 究éçº lï¬â¯ Jubatus lï¬â¯ åæ£ãªã³ã©ã¤ã³æ©æ¢°å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ lï¬â¯ å°â¾¨é lï¬â¯ â¾èªç¶â¾è¨èªå¦ç理 lï¬â¯ ããã¹ããã¤ãã³ã° 2
æ±äº¬å·¥æ¥å¤§å¦ é·è°·å·ä¿®åææã®ã°ã«ã¼ãã¯ãç¬èªã«éçºããæ©æ¢°å¦ç¿ã¢ã«ã´ãªãºã ãSOINNããçºå±ããããªã³ã©ã¤ã³å¦ç¿ã®å®å®æ§ãé£èºçã«åä¸ããããã¨ã«æåãã¾ããã "ç»åæ¤ç´¢ã®æè¡ã¯ããªãå®ç¨åããã¦ããã¾ãã®ã§ãããã¨é£åããããã¨ã§ãã©ãã大äºãªç¹å¾´ãªã®ããèªåã§åãåºãã¦ãã¦ããã®å¯¾è±¡ç©ã¨ããã°ãããããã®ã¨ããã®ãè¦ããäºãã§ãã¾ãã" ãããã¯ãã°ã«ã¼ããã¤ã³ãã§æ®å½±ããããªã¯ã·ã£ã¼ãã®ç»åã§ãããã®ç»åã®1ã¤ããã¼ãããã¨ãã·ã¹ãã ã¯ã¾ã ãªã¯ã·ã£ã¼ãå¦ç¿ãã¦ããªãã®ã§ããã§ã«å¦ç¿æ¸ã¿ã§ãããã¯ã«ããã¨èªèãã¾ããããã§ãã·ã¹ãã ã«ããªã¯ã·ã£ã¼ãã¨ãããã¼ã¯ã¼ããä¸ãã¾ããããã¨ã¤ã³ã¿ã¼ãããããããªã¯ã·ã£ã¼ãã«é¢é£ããç»åã®ä¸»è¦ãªç¹å¾´ãæ½åºãã¦ããªã¯ã·ã£ã¼ã¨ã¯ãªã«ããèªãå¦ç¿ãã¾ããå¦ç¿å¾ã¯ãå ç¨ã¨ã¯éããªã¯ã·ã£ã¼ã®ç»åããã¼ãããã¨ãã¦ãããã®ç»åããªã¯ã·ã£ã¼ã§ããã¨ããã
250. Reference "Pattern Recognition and Machine Learning" Christopher M. Bishop Springer; 1st ed. 2006. Corr. 2nd printing edition (October 1, 2007) "Truth and Probability" Frank Plumpton Ramsey (1926) "The physical basis of IMRT and inverse planning" S Webb British Journal of Radiology (2003) 76, 678-689 251. Wikipedia æ¸¡è¾ºæ § http://ja.wikipedia.org/wiki/%E6%B8%A1%E8%BE%BA%E6%85 %A7 ãNo Free Lunch T
ã¯ããã« OLL ã«ãããªã³ã©ã¤ã³å¦ç¿ã試ãã¦ã¿ã - å¹ã¿Tips ã«ã¦ oll ï¼Online-Learning Library) ã触ã£ã¦ã¿ãè¨äºãæ¸ãã¾ãããããããå ã« oll ã node.js ã®ã¢ããªã³åããã¦ã¿ã¾ããã ãã¦ã³ãã¼ã hecomi/node-oll · GitHub 使ã£ã¦ã¿ã github ã® README ã«ãæ¸ãã¾ããã以ä¸ã®ããã«ä½¿ãã¾ãã 2012/06/20 0:25 - add ã®å¼æ°ãä¿®æ£ var oll = require('./build/Release/oll'); var PA1 = new oll.PA1(); // å¦ç¿ã¨ãã¹ã PA1.add(true, '0:1.0 1:2.0 2:-1.0'); PA1.add(false, '0:-0.5 1:1.0 2:-0.5'); console.log(PA1.test('0:1
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}