深層å¦ç¿(Deep Learning)ã¨ãã¤ãºçæé©å(Bayesian Optimization)ã«ããå»ç¨ç»åèªå½±æ¯æ´ã®è©¦ã¿
ããã¶ãé ããªãã¾ããããã²ã¨ã¾ãå®æã§ããçåç¹ã»ç¿»è¨³ãã¹ãå§ãã¨ããææãããã¾ããããã©ãã©ããé¡ããã¾ã(14/12/18)ã 1é±éãããã大ä¸å¤«ã ããã¨ãããæ¬ã£ã¦ãããããã£ã¨ããéã«æ稿æ¥ã«ãªã£ã¦ãã¾ãã¾ãããæ¬å½ã¯Pylearn2ã使ã£ã¦RBMãå¦ç¿ããããã¨èãã¦ããã®ã§ãããå½¹ã«ç«ã¤å 容ãæ¸ãã«ã¯æéã足ããªããããã®ã§ããè¶ãæ¿ãã¾ãã ä»åã®ç®æ¨ Restricted Boltzmann Machineåã³Deep Belief Networkã®åºæ¬çãªåä½åçãç¥ã "A Practical Guide to Training Redstricted Boltzmann Machine"(GE Hinton, 2012)ã§é»éè¡(RBMã®æ§è½ãå¼ãåºãã³ã)ãå¦ã¶ å æ¥ã以ä¸ã®ãããªçºè¡¨ããã¾ãããä»åã®å 容ã¯ä»¥ä¸ã®ã¹ã©ã¤ãã®ç¼ãç´ãã»æ¹è¯ãå«ã¿ã¾ããåèã«ã©ã
Python Theano ã使ã£ã¦ Deep Learning ã®çè«ã¨ã¢ã«ã´ãªãºã ãå¦ã¶ä¼ã第ä¸åãä»åã§æ師ããå¦ç¿ã®é¨åã¯ã²ã¨æ®µè½ã ç®æ¬¡ DeepLearning 0.1 ã«ã¤ãã¦ã対å¿ããè¨äºã®ãªã³ã¯ãè¨è¼ã 第ä¸å MNIST ãã¼ã¿ããã¸ã¹ãã£ãã¯å帰ã§å¤å¥ãã è± ç¬¬äºå å¤å±¤ãã¼ã»ãããã³ è± ç¬¬ä¸å ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ (ä»å) è± ç¬¬åå Denoising ãªã¼ãã¨ã³ã³ã¼ã è± ç¬¬äºå å¤å±¤ Denoising ãªã¼ãã¨ã³ã³ã¼ã è± ç¬¬å åã®æºå1 networkx ã§ãã«ã³ã確çå ´ / 確çä¼æ¬æ³ãå®è£ ãã - 第å åã®æºå2 ããããã£ã¼ã«ããããã¯ã¼ã¯ - 第å å å¶ç´ä»ããã«ããã³ãã·ã³ è± Deep Belief Networks è± Hybrid Monte-Carlo Sampling è± Recurrent Neural Network
2. â¾èªâ¼°å·±ç´¹ä» lï¬ å¾å± Â èª ä¹ Â (Seiya  Tokui) æ ªå¼ä¼ç¤¾Preferred  Infrastructure,  Jubatus  Pj.  ãªãµã¼ãã£ã¼ lï¬ å°â¾¨éã¯æ©æ¢°å¦ç¿ï¼ä¿®â¼ 士ãç¾è·ï¼ lï¬ â ç³»åï¦ã©ããªã³ã°âããã·ã¥ã»è¿åæ¢ç´¢ï¥ªâ深層å¦ç¿ lï¬ ä»ã®èå³ã¯æ·±å±¤å¦ç¿ã表ç¾å¦ç¿ãåæ£å¦ç¿ãæ å解æ lï¬ @beam2d  (Twitter,  Github,  etc.) 2 /  47 3. 2011å¹´ï¦:  ⾳é³å£°èªè識ã«ãããæå lï¬ lï¬ 3 /  47 DNN-âââHMM  ã使ã£ã⼿ææ³ããâ¾³é³å£°èªè識㮠 word  error  rate  ã§å¾æ¥ æ³ Â (GMM)  ãã  10%  åå¾ãæ¹å æºå¸¯ç«¯æ«ã«ãããâ¾³é³å£°æä½ã«  Deep  Learning  ãå©ï§â½¤ç¨ãããããã« F. Seide, G. Li and D. Yu.
Andrew å çã®èª¬æãã¨ã¦ãããããããã£ãã®ã§ã¡ã¢ã§ããã«ã«ããã¯ã»ã©ã¤ãã©ã¼æ å ±éï¼KL divergenceï¼ãç¨ããäºãªããã¤ã§ã³ã¼ã³ã®ä¸çå¼ã®ã¿ã§èªç¶ã«å±éãã¦ãã¾ããã å¸é¢æ° â convex function fââ(x) > 0ãã¾ã x ããã¯ãã«ã®å ´åã¯ãã·ã¢ã³ H >= 0 ã®æãf(x) ã¯å¸é¢æ°ãfââ(x) > 0 ã¨ã¯ x ã大ãããªãã«ã¤ãæ¥ç·ã®å¾ã fâ(x) ã大ãããªãã¨ãããã¨ãå ¨ã¦ã® x ã§ãä¸å³ã® (1) -> (2) -> (3) ã®ãããªå¤åãæãç«ã¤ f(x) ã®ãã¨ã ã¤ã¨ã³ã»ã³ã®ä¸çå¼ â Jensenâs inequality f(x) ãå¸é¢æ°ã®æãE[f(x)] >= f(E[x]) ãæãç«ã¤ããããã¤ã§ã³ã¼ã³ã®ä¸çå¼ã å³ãè¦ãã°ç´æçã«ãããã®ã ããä»ä»®ã« x㯠a,b ã®ï¼ç¹ããåããªãã¨ããã¨ãf(E[x])ããã
ç¦å³¶ è²´åãéé å彦 æ±äº¬é½ç«æ¾æ²¢ç é¢ç²¾ç¥ç§ DOIï¼10.14931/bsd.4583ãå稿åä»æ¥ï¼2013å¹´12æ10æ¥ãå稿å®ææ¥ï¼2014å¹´6æ11æ¥ æ å½ç·¨éå§å¡ï¼å è¤ å¿ å²ï¼ç¬ç«è¡æ¿æ³äººçåå¦ç 究æ è³ç§å¦ç·åç 究ã»ã³ã¿ã¼ï¼ è±èªåï¼Capgras syndromeãç¬ï¼Capgras-Syndromãä»ï¼syndrome de Capgras å義èªï¼ã«ãã°ã©å¦æ³ (Capgras delusion)ãã«ãã°ã©ç¾è±¡ãã«ãã°ã©çç¶ãã½ã¸ã¼ã®é¯è¦ ã«ãã°ã©çå群ã¨ã¯ãè¿è¦ªè ãªã©ãçäºã¤ã®å½ç©ã¨å ¥ãæ¿ãã£ãã¨ç¢ºä¿¡ããå¦æ³ã§ããã1923å¹´ã«Capgras. J. ã¨Reboul-Lachoux. J.[1]ã«ãã£ã¦å ±åããããè¿å¹´ã§ã¯ãã«ãã°ã©çå群ããã¬ã´ãªçå群ãç¸äºå¤èº«å¦æ³ããã³èªå·±å身çå群ãå¦æ³æ§äººç©èª¤èªçå群ã®äºåã¨ãã¦ã¾ã¨ãããã¦ãããã«ãã°ã©çå群ã¯å¦æ³åçµ±å失調
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}