forked from microsoft/qlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
handler.py
378 lines (353 loc) · 15.4 KB
/
handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from ...data.dataset.handler import DataHandlerLP
from ...data.dataset.processor import Processor
from ...utils import get_callable_kwargs
from ...data.dataset import processor as processor_module
from inspect import getfullargspec
def check_transform_proc(proc_l, fit_start_time, fit_end_time):
new_l = []
for p in proc_l:
if not isinstance(p, Processor):
klass, pkwargs = get_callable_kwargs(p, processor_module)
args = getfullargspec(klass).args
if "fit_start_time" in args and "fit_end_time" in args:
assert (
fit_start_time is not None and fit_end_time is not None
), "Make sure `fit_start_time` and `fit_end_time` are not None."
pkwargs.update(
{
"fit_start_time": fit_start_time,
"fit_end_time": fit_end_time,
}
)
proc_config = {"class": klass.__name__, "kwargs": pkwargs}
if isinstance(p, dict) and "module_path" in p:
proc_config["module_path"] = p["module_path"]
new_l.append(proc_config)
else:
new_l.append(p)
return new_l
_DEFAULT_LEARN_PROCESSORS = [
{"class": "DropnaLabel"},
{"class": "CSZScoreNorm", "kwargs": {"fields_group": "label"}},
]
_DEFAULT_INFER_PROCESSORS = [
{"class": "ProcessInf", "kwargs": {}},
{"class": "ZScoreNorm", "kwargs": {}},
{"class": "Fillna", "kwargs": {}},
]
class Alpha360(DataHandlerLP):
def __init__(
self,
instruments="csi500",
start_time=None,
end_time=None,
freq="day",
infer_processors=_DEFAULT_INFER_PROCESSORS,
learn_processors=_DEFAULT_LEARN_PROCESSORS,
fit_start_time=None,
fit_end_time=None,
filter_pipe=None,
inst_processor=None,
**kwargs,
):
infer_processors = check_transform_proc(infer_processors, fit_start_time, fit_end_time)
learn_processors = check_transform_proc(learn_processors, fit_start_time, fit_end_time)
data_loader = {
"class": "QlibDataLoader",
"kwargs": {
"config": {
"feature": self.get_feature_config(),
"label": kwargs.get("label", self.get_label_config()),
},
"filter_pipe": filter_pipe,
"freq": freq,
"inst_processor": inst_processor,
},
}
super().__init__(
instruments=instruments,
start_time=start_time,
end_time=end_time,
data_loader=data_loader,
learn_processors=learn_processors,
infer_processors=infer_processors,
)
def get_label_config(self):
return (["Ref($close, -2)/Ref($close, -1) - 1"], ["LABEL0"])
def get_feature_config(self):
# NOTE:
# Alpha360 tries to provide a dataset with original price data
# the original price data includes the prices and volume in the last 60 days.
# To make it easier to learn models from this dataset, all the prices and volume
# are normalized by the latest price and volume data ( dividing by $close, $volume)
# So the latest normalized $close will be 1 (with name CLOSE0), the latest normalized $volume will be 1 (with name VOLUME0)
# If further normalization are executed (e.g. centralization), CLOSE0 and VOLUME0 will be 0.
fields = []
names = []
for i in range(59, 0, -1):
fields += ["Ref($close, %d)/$close" % (i)]
names += ["CLOSE%d" % (i)]
fields += ["$close/$close"]
names += ["CLOSE0"]
for i in range(59, 0, -1):
fields += ["Ref($open, %d)/$close" % (i)]
names += ["OPEN%d" % (i)]
fields += ["$open/$close"]
names += ["OPEN0"]
for i in range(59, 0, -1):
fields += ["Ref($high, %d)/$close" % (i)]
names += ["HIGH%d" % (i)]
fields += ["$high/$close"]
names += ["HIGH0"]
for i in range(59, 0, -1):
fields += ["Ref($low, %d)/$close" % (i)]
names += ["LOW%d" % (i)]
fields += ["$low/$close"]
names += ["LOW0"]
for i in range(59, 0, -1):
fields += ["Ref($vwap, %d)/$close" % (i)]
names += ["VWAP%d" % (i)]
fields += ["$vwap/$close"]
names += ["VWAP0"]
for i in range(59, 0, -1):
fields += ["Ref($volume, %d)/($volume+1e-12)" % (i)]
names += ["VOLUME%d" % (i)]
fields += ["$volume/($volume+1e-12)"]
names += ["VOLUME0"]
return fields, names
class Alpha360vwap(Alpha360):
def get_label_config(self):
return (["Ref($vwap, -2)/Ref($vwap, -1) - 1"], ["LABEL0"])
class Alpha158(DataHandlerLP):
def __init__(
self,
instruments="csi500",
start_time=None,
end_time=None,
freq="day",
infer_processors=[],
learn_processors=_DEFAULT_LEARN_PROCESSORS,
fit_start_time=None,
fit_end_time=None,
process_type=DataHandlerLP.PTYPE_A,
filter_pipe=None,
inst_processor=None,
**kwargs,
):
infer_processors = check_transform_proc(infer_processors, fit_start_time, fit_end_time)
learn_processors = check_transform_proc(learn_processors, fit_start_time, fit_end_time)
data_loader = {
"class": "QlibDataLoader",
"kwargs": {
"config": {
"feature": self.get_feature_config(),
"label": kwargs.get("label", self.get_label_config()),
},
"filter_pipe": filter_pipe,
"freq": freq,
"inst_processor": inst_processor,
},
}
super().__init__(
instruments=instruments,
start_time=start_time,
end_time=end_time,
data_loader=data_loader,
infer_processors=infer_processors,
learn_processors=learn_processors,
process_type=process_type,
)
def get_feature_config(self):
conf = {
"kbar": {},
"price": {
"windows": [0],
"feature": ["OPEN", "HIGH", "LOW", "VWAP"],
},
"rolling": {},
}
return self.parse_config_to_fields(conf)
def get_label_config(self):
return (["Ref($close, -2)/Ref($close, -1) - 1"], ["LABEL0"])
@staticmethod
def parse_config_to_fields(config):
"""create factors from config
config = {
'kbar': {}, # whether to use some hard-code kbar features
'price': { # whether to use raw price features
'windows': [0, 1, 2, 3, 4], # use price at n days ago
'feature': ['OPEN', 'HIGH', 'LOW'] # which price field to use
},
'volume': { # whether to use raw volume features
'windows': [0, 1, 2, 3, 4], # use volume at n days ago
},
'rolling': { # whether to use rolling operator based features
'windows': [5, 10, 20, 30, 60], # rolling windows size
'include': ['ROC', 'MA', 'STD'], # rolling operator to use
#if include is None we will use default operators
'exclude': ['RANK'], # rolling operator not to use
}
}
"""
fields = []
names = []
if "kbar" in config:
fields += [
"($close-$open)/$open",
"($high-$low)/$open",
"($close-$open)/($high-$low+1e-12)",
"($high-Greater($open, $close))/$open",
"($high-Greater($open, $close))/($high-$low+1e-12)",
"(Less($open, $close)-$low)/$open",
"(Less($open, $close)-$low)/($high-$low+1e-12)",
"(2*$close-$high-$low)/$open",
"(2*$close-$high-$low)/($high-$low+1e-12)",
]
names += [
"KMID",
"KLEN",
"KMID2",
"KUP",
"KUP2",
"KLOW",
"KLOW2",
"KSFT",
"KSFT2",
]
if "price" in config:
windows = config["price"].get("windows", range(5))
feature = config["price"].get("feature", ["OPEN", "HIGH", "LOW", "CLOSE", "VWAP"])
for field in feature:
field = field.lower()
fields += ["Ref($%s, %d)/$close" % (field, d) if d != 0 else "$%s/$close" % field for d in windows]
names += [field.upper() + str(d) for d in windows]
if "volume" in config:
windows = config["volume"].get("windows", range(5))
fields += ["Ref($volume, %d)/($volume+1e-12)" % d if d != 0 else "$volume/($volume+1e-12)" for d in windows]
names += ["VOLUME" + str(d) for d in windows]
if "rolling" in config:
windows = config["rolling"].get("windows", [5, 10, 20, 30, 60])
include = config["rolling"].get("include", None)
exclude = config["rolling"].get("exclude", [])
# `exclude` in dataset config unnecessary filed
# `include` in dataset config necessary field
use = lambda x: x not in exclude and (include is None or x in include)
if use("ROC"):
fields += ["Ref($close, %d)/$close" % d for d in windows]
names += ["ROC%d" % d for d in windows]
if use("MA"):
fields += ["Mean($close, %d)/$close" % d for d in windows]
names += ["MA%d" % d for d in windows]
if use("STD"):
fields += ["Std($close, %d)/$close" % d for d in windows]
names += ["STD%d" % d for d in windows]
if use("BETA"):
fields += ["Slope($close, %d)/$close" % d for d in windows]
names += ["BETA%d" % d for d in windows]
if use("RSQR"):
fields += ["Rsquare($close, %d)" % d for d in windows]
names += ["RSQR%d" % d for d in windows]
if use("RESI"):
fields += ["Resi($close, %d)/$close" % d for d in windows]
names += ["RESI%d" % d for d in windows]
if use("MAX"):
fields += ["Max($high, %d)/$close" % d for d in windows]
names += ["MAX%d" % d for d in windows]
if use("LOW"):
fields += ["Min($low, %d)/$close" % d for d in windows]
names += ["MIN%d" % d for d in windows]
if use("QTLU"):
fields += ["Quantile($close, %d, 0.8)/$close" % d for d in windows]
names += ["QTLU%d" % d for d in windows]
if use("QTLD"):
fields += ["Quantile($close, %d, 0.2)/$close" % d for d in windows]
names += ["QTLD%d" % d for d in windows]
if use("RANK"):
fields += ["Rank($close, %d)" % d for d in windows]
names += ["RANK%d" % d for d in windows]
if use("RSV"):
fields += ["($close-Min($low, %d))/(Max($high, %d)-Min($low, %d)+1e-12)" % (d, d, d) for d in windows]
names += ["RSV%d" % d for d in windows]
if use("IMAX"):
fields += ["IdxMax($high, %d)/%d" % (d, d) for d in windows]
names += ["IMAX%d" % d for d in windows]
if use("IMIN"):
fields += ["IdxMin($low, %d)/%d" % (d, d) for d in windows]
names += ["IMIN%d" % d for d in windows]
if use("IMXD"):
fields += ["(IdxMax($high, %d)-IdxMin($low, %d))/%d" % (d, d, d) for d in windows]
names += ["IMXD%d" % d for d in windows]
if use("CORR"):
fields += ["Corr($close, Log($volume+1), %d)" % d for d in windows]
names += ["CORR%d" % d for d in windows]
if use("CORD"):
fields += ["Corr($close/Ref($close,1), Log($volume/Ref($volume, 1)+1), %d)" % d for d in windows]
names += ["CORD%d" % d for d in windows]
if use("CNTP"):
fields += ["Mean($close>Ref($close, 1), %d)" % d for d in windows]
names += ["CNTP%d" % d for d in windows]
if use("CNTN"):
fields += ["Mean($close<Ref($close, 1), %d)" % d for d in windows]
names += ["CNTN%d" % d for d in windows]
if use("CNTD"):
fields += ["Mean($close>Ref($close, 1), %d)-Mean($close<Ref($close, 1), %d)" % (d, d) for d in windows]
names += ["CNTD%d" % d for d in windows]
if use("SUMP"):
fields += [
"Sum(Greater($close-Ref($close, 1), 0), %d)/(Sum(Abs($close-Ref($close, 1)), %d)+1e-12)" % (d, d)
for d in windows
]
names += ["SUMP%d" % d for d in windows]
if use("SUMN"):
fields += [
"Sum(Greater(Ref($close, 1)-$close, 0), %d)/(Sum(Abs($close-Ref($close, 1)), %d)+1e-12)" % (d, d)
for d in windows
]
names += ["SUMN%d" % d for d in windows]
if use("SUMD"):
fields += [
"(Sum(Greater($close-Ref($close, 1), 0), %d)-Sum(Greater(Ref($close, 1)-$close, 0), %d))"
"/(Sum(Abs($close-Ref($close, 1)), %d)+1e-12)" % (d, d, d)
for d in windows
]
names += ["SUMD%d" % d for d in windows]
if use("VMA"):
fields += ["Mean($volume, %d)/($volume+1e-12)" % d for d in windows]
names += ["VMA%d" % d for d in windows]
if use("VSTD"):
fields += ["Std($volume, %d)/($volume+1e-12)" % d for d in windows]
names += ["VSTD%d" % d for d in windows]
if use("WVMA"):
fields += [
"Std(Abs($close/Ref($close, 1)-1)*$volume, %d)/(Mean(Abs($close/Ref($close, 1)-1)*$volume, %d)+1e-12)"
% (d, d)
for d in windows
]
names += ["WVMA%d" % d for d in windows]
if use("VSUMP"):
fields += [
"Sum(Greater($volume-Ref($volume, 1), 0), %d)/(Sum(Abs($volume-Ref($volume, 1)), %d)+1e-12)"
% (d, d)
for d in windows
]
names += ["VSUMP%d" % d for d in windows]
if use("VSUMN"):
fields += [
"Sum(Greater(Ref($volume, 1)-$volume, 0), %d)/(Sum(Abs($volume-Ref($volume, 1)), %d)+1e-12)"
% (d, d)
for d in windows
]
names += ["VSUMN%d" % d for d in windows]
if use("VSUMD"):
fields += [
"(Sum(Greater($volume-Ref($volume, 1), 0), %d)-Sum(Greater(Ref($volume, 1)-$volume, 0), %d))"
"/(Sum(Abs($volume-Ref($volume, 1)), %d)+1e-12)" % (d, d, d)
for d in windows
]
names += ["VSUMD%d" % d for d in windows]
return fields, names
class Alpha158vwap(Alpha158):
def get_label_config(self):
return (["Ref($vwap, -2)/Ref($vwap, -1) - 1"], ["LABEL0"])