-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathvix_signals.py
executable file
·276 lines (221 loc) · 9.03 KB
/
vix_signals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/usr/bin/env -S uv run --quiet --script
# /// script
# dependencies = [
# "pandas",
# "matplotlib",
# "numpy",
# "yfinance",
# "persistent-cache@git+https://github.com/namuan/persistent-cache"
# ]
# ///
"""
VIX Term Structure Analysis Script
Analyzes VIX signals using median-based trading indicators.
Goes LONG when IVTS < 1 (VIX term structure in backwardation)
Goes SHORT when IVTS > 1 (VIX term structure in contango)
Required packages:
pip install pandas matplotlib numpy yfinance persistent-cache
Usage:
./vix_signals.py [-h] [-v] [--start-date YYYY-MM-DD] [--end-date YYYY-MM-DD]
[--med1 WINDOW1] [--med2 WINDOW2]
Examples:
./vix_signals.py --start-date 2023-01-01 --end-date 2024-01-01
./vix_signals.py --end-date 2024-01-01 # Uses one year before end date
./vix_signals.py # Uses today as end date and one year before
./vix_signals.py --med1 2 --med2 4 # Uses custom median windows
"""
import logging
from argparse import ArgumentParser, ArgumentTypeError
from datetime import datetime, timedelta
from typing import Dict, List, Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yfinance as yf
from persistent_cache import PersistentCache
def init_logger(verbosity: int) -> None:
level = {0: logging.WARNING, 1: logging.INFO, 2: logging.DEBUG}
logging.basicConfig(
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
level=level.get(verbosity, logging.DEBUG),
)
def parse_date(date_str: str) -> datetime:
try:
return datetime.strptime(date_str, "%Y-%m-%d")
except ValueError:
raise ArgumentTypeError(f"Invalid date format: {date_str}. Use YYYY-MM-DD")
def parse_arguments() -> Tuple[datetime, datetime, int, int, int]:
parser = ArgumentParser(description=__doc__)
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("--start-date", type=parse_date)
parser.add_argument("--end-date", type=parse_date, default=datetime.today())
parser.add_argument(
"--med1", type=int, default=3, help="First median window (default: 3)"
)
parser.add_argument(
"--med2", type=int, default=5, help="Second median window (default: 5)"
)
args = parser.parse_args()
start_date = args.start_date or args.end_date - timedelta(days=365)
if start_date > args.end_date:
parser.error("Start date must be before end date")
if args.med1 <= 0 or args.med2 <= 0:
parser.error("Median windows must be positive integers")
return start_date, args.end_date, args.verbose, args.med1, args.med2
@PersistentCache()
def fetch_market_data(
symbol: str, start_date: datetime, end_date: datetime
) -> pd.DataFrame:
return yf.download(symbol, start=start_date, end=end_date)
def fetch_all_symbols(
symbols: List[str], start_date: datetime, end_date: datetime
) -> Dict[str, pd.DataFrame]:
return {
symbol: fetch_market_data(
symbol, start_date.strftime("%Y-%m-%d"), end_date.strftime("%Y-%m-%d")
)
for symbol in symbols
}
def calculate_ivts(market_data: Dict[str, pd.DataFrame]) -> pd.DataFrame:
df = pd.DataFrame()
df["Short_Term_VIX"] = market_data["^VIX9D"]["Close"]
df["Long_Term_VIX"] = market_data["^VIX"]["Close"]
df["IVTS"] = df["Short_Term_VIX"] / df["Long_Term_VIX"]
df["SPY"] = market_data["SPY"]["Close"]
return df
def calculate_signals(df: pd.DataFrame, window1: int, window2: int) -> pd.DataFrame:
# Add raw IVTS signal
df["Signal_Raw"] = (df["IVTS"] < 1).astype(int) * 2 - 1
# User-defined median signals
df[f"IVTS_Med{window1}"] = df["IVTS"].rolling(window=window1).median()
df[f"IVTS_Med{window2}"] = df["IVTS"].rolling(window=window2).median()
df[f"Signal_Med{window1}"] = (df[f"IVTS_Med{window1}"] < 1).astype(int) * 2 - 1
df[f"Signal_Med{window2}"] = (df[f"IVTS_Med{window2}"] < 1).astype(int) * 2 - 1
return df
def plot_trading_signals(df: pd.DataFrame, window1: int, window2: int) -> None:
fig = plt.figure(figsize=(15, 20))
gs = fig.add_gridspec(5, 1, height_ratios=[1, 1, 1, 1, 1], hspace=0.4)
# SPY Price
ax1 = fig.add_subplot(gs[0])
ax1.plot(df.index, df["SPY"], label="SPY", color="blue")
ax1.set_title("SPY Price")
ax1.set_ylabel("Price ($)")
ax1.grid(True)
ax1.legend()
# IVTS with median filters
ax2 = fig.add_subplot(gs[1])
ax2.plot(df.index, df["IVTS"], label="IVTS", color="green", alpha=0.5)
ax2.plot(
df.index, df[f"IVTS_Med{window1}"], label=f"IVTS Med-{window1}", color="blue"
)
ax2.plot(
df.index, df[f"IVTS_Med{window2}"], label=f"IVTS Med-{window2}", color="red"
)
ax2.axhline(y=1, color="black", linestyle="--", label="Signal Threshold")
ax2.set_title("IVTS with Median Filters (LONG when < 1, SHORT when > 1)")
ax2.set_ylabel("IVTS Ratio")
ax2.grid(True)
ax2.legend()
def plot_signal_panel(ax, signal_col: str, title: str) -> None:
signals = df[signal_col]
ax.step(df.index, signals, where="post", color="blue", label="Signal", zorder=2)
for i in range(len(df.index) - 1):
color = "green" if signals.iloc[i] == 1 else "red"
ax.axvspan(df.index[i], df.index[i + 1], alpha=0.2, color=color, zorder=1)
ax.axhline(y=1, color="green", linestyle="--", alpha=0.5, label="Long")
ax.axhline(y=-1, color="red", linestyle="--", alpha=0.5, label="Short")
ax.set_title(title)
ax.set_ylabel("Signal")
ax.grid(True)
ax.legend()
ax.set_ylim(-1.5, 1.5)
# Plot raw IVTS signal
plot_signal_panel(
fig.add_subplot(gs[2]), "Signal_Raw", "Trading Signals (Raw IVTS)"
)
# Plot median-based signals
plot_signal_panel(
fig.add_subplot(gs[3]),
f"Signal_Med{window1}",
f"Trading Signals (Median-{window1})",
)
plot_signal_panel(
fig.add_subplot(gs[4]),
f"Signal_Med{window2}",
f"Trading Signals (Median-{window2})",
)
plt.show()
def calculate_statistics(df: pd.DataFrame, window1: int, window2: int) -> Dict:
stats = {
"ivts_stats": df["IVTS"].describe().to_dict(),
"signal_changes": {
"raw": (df["Signal_Raw"] != df["Signal_Raw"].shift(1)).sum(),
f"med{window1}": (
df[f"Signal_Med{window1}"] != df[f"Signal_Med{window1}"].shift(1)
).sum(),
f"med{window2}": (
df[f"Signal_Med{window2}"] != df[f"Signal_Med{window2}"].shift(1)
).sum(),
},
"current_values": {
"SPY": df["SPY"].iloc[-1],
"IVTS": df["IVTS"].iloc[-1],
f"IVTS_Med{window1}": df[f"IVTS_Med{window1}"].iloc[-1],
f"IVTS_Med{window2}": df[f"IVTS_Med{window2}"].iloc[-1],
"Raw_Signal": "LONG" if df["Signal_Raw"].iloc[-1] == 1 else "SHORT",
f"Med{window1}_Signal": "LONG"
if df[f"Signal_Med{window1}"].iloc[-1] == 1
else "SHORT",
f"Med{window2}_Signal": "LONG"
if df[f"Signal_Med{window2}"].iloc[-1] == 1
else "SHORT",
"Short_Term_VIX": df["Short_Term_VIX"].iloc[-1],
"Long_Term_VIX": df["Long_Term_VIX"].iloc[-1],
},
}
def calc_holding_period(signal_col: str) -> float:
changes = df[signal_col] != df[signal_col].shift(1)
periods = []
current = 0
for change in changes:
if change and current > 0:
periods.append(current)
current = 1
else:
current += 1
if current > 0:
periods.append(current)
return np.mean(periods) if periods else 0
stats["avg_holding_periods"] = {
"raw": calc_holding_period("Signal_Raw"),
f"med{window1}": calc_holding_period(f"Signal_Med{window1}"),
f"med{window2}": calc_holding_period(f"Signal_Med{window2}"),
}
return stats
def log_statistics(stats: Dict) -> None:
logging.info("\nIVTS Statistics:")
for stat, value in stats["ivts_stats"].items():
logging.info(f"{stat}: {value:.3f}")
logging.info("\nSignal Changes:")
for key, value in stats["signal_changes"].items():
logging.info(f"{key}: {value}")
logging.info("\nAverage Holding Periods:")
for key, value in stats["avg_holding_periods"].items():
logging.info(f"{key}: {value:.1f} days")
logging.info("\nCurrent Values:")
for key, value in stats["current_values"].items():
logging.info(
f"{key}: {value:.2f}" if isinstance(value, float) else f"{key}: {value}"
)
def main() -> None:
start_date, end_date, verbosity, window1, window2 = parse_arguments()
init_logger(verbosity)
symbols = ["^VIX9D", "^VIX", "SPY"]
market_data = fetch_all_symbols(symbols, start_date, end_date)
df = calculate_ivts(market_data)
df = calculate_signals(df, window1, window2)
plot_trading_signals(df, window1, window2)
stats = calculate_statistics(df, window1, window2)
log_statistics(stats)
if __name__ == "__main__":
main()