-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbrian_gbc_simple_demo.py
71 lines (52 loc) · 1.41 KB
/
brian_gbc_simple_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division, absolute_import, print_function
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import brian
from brian import siemens
import cochlear_nucleus.brn as cn
def main():
tmax = 50e-3 # second
cn.set_fs(40e3) # Hz
# anf_trains are normally generated by something like
# cochlea.run_zilany2009()
anf_trains = pd.DataFrame([
{'spikes': np.array([10e-3, 30e-3]), 'duration': tmax},
{'spikes': np.array([20e-3, 40e-3]), 'duration': tmax},
])
# Generate ANF and GBC groups
anfs = cn.make_anf_group(anf_trains)
gbcs = cn.make_gbc_group(10)
# Connect ANFs and GBCs
synapses = brian.Connection(
anfs,
gbcs,
'ge_syn',
)
synapses.connect_random(
anfs,
gbcs,
p=0.5,
fixed=True,
weight=1e-6*siemens
)
# Monitors for the GBCs
spikes = brian.SpikeMonitor(gbcs)
voltages = brian.StateMonitor(gbcs, 'vm', record=True)
# Run the simulation
cn.run(
duration=tmax,
objects=[anfs, gbcs, synapses, spikes, voltages]
)
# Present the results
print(spikes.spikes)
fig, ax = plt.subplots(2,1)
plt.sca(ax[0])
brian.raster_plot(spikes)
plt.sca(ax[1])
voltages.plot()
plt.show()
if __name__ == "__main__":
main()