- The code computes the self-similar solution of a flat-plate, compressible boundary layer with variable shear viscosity
$\mu(T)$ and thermal conductivity$k(T)$ , constant Prandtl number Pr, constant Mach number Ma, and constant heat capacity ratio$\gamma$ (Stewartson, 1964).$$\left(\frac{\mu}{T}F^{\prime\prime}\right)^\prime + FF^{\prime\prime} = 0$$ $$FT^\prime +\left(\gamma-1\right)\mathrm{Ma}^2 \frac{\mu}{T}\left(F^{\prime\prime}\right)^2 + \mathrm{Pr}^{-1}\left(\frac{k}{T}T^\prime\right)^\prime = 0$$ - The code uses a standard block-elimination algorithm (Cebeci, 2002).
- To run the code, open
BL_main.jl
and press CTRL+F5. - You can choose your physical parameters in
BL_input.jl
## INPUT FILE # discretization eta_max = 10.0 # maximum value of eta N_max = 1000 # discretization tol = 1e-12 # tolerance # physical parameters gamma = 1.4 # heat capacity ratio Prandtl = 0.72 # free-stream Prandtl number Mach = 3.0 # free-stream Mach number TwTad_ratio = 1.1 # wall-to-adiabatic temperature ratio chi_mu = 0.43 # non-dimensional sutherland constant (viscosity) chi_k = 0.66 # non-dimensional sutherland constant (conductivity)
- All the variables are non-dimensional and normalized to the free-stream values. The parameter
TwTad_ratio
is the ratio of the non-dimensional wall temperature$T_w$ to the adiabatic recovery temperature$$T_{ad,w} = 1+\frac{\gamma-1}{2}\mathrm{Pr}^{1/2}\mathrm{Ma}^2$$ -
chi_mu
andchi_k
denote the non-dimensional Sutherland constants$\chi_\mu$ and$\chi_k$ $$\mu = T^{3/2}\frac{1+\chi_\mu}{T+\chi_\mu} \mbox{ and } k = T^{3/2}\frac{1+\chi_k}{T+\chi_k}$$
Cebeci, T. (2002). Convective Heat Transfer. Heidelberg: Horizons Pub. ISBN: 9780966846140, LCCN: 2002068512.
Graziosi, P., & Brown, G. L. (2002). Experiments on stability and transition at Mach 3. J. Fluid Mech., 472, 83–124. DOI: 10.1017/S0022112002002094
Ricco, P., & Fossà, L. (2023). Receptivity of compressible boundary layers over porous surfaces. Phys. Rev. Fluids, 8(7), 073903. DOI: 10.1103/PhysRevFluids.8.073903
Stewartson, K. (1964). The Theory of Laminar Boundary Layers in Compressible Fluids. Oxford: Clarendon Press.