Skip to content

Latest commit

 

History

History

assignment2

Assigment 2

Goals

In this assignment you will practice writing backpropagation code, and training Neural Networks and Convolutional Neural Networks. The goals of this assignment are as follows:

  • Understand Neural Networks and how they are arranged in layered architectures.
  • Understand and be able to implement (vectorized) backpropagation.
  • Implement various update rules used to optimize Neural Networks.
  • Implement Batch Normalization and Layer Normalization for training deep networks.
  • Implement Dropout to regularize networks.
  • Understand the architecture of Convolutional Neural Networks and get practice with training them.
  • Gain experience with a major deep learning framework, such as TensorFlow or PyTorch.

Q1: Fully-connected Neural Network (20 points)

The notebook FullyConnectedNets.ipynb will introduce you to our modular layer design, and then use those layers to implement fully-connected networks of arbitrary depth. To optimize these models you will implement several popular update rules.

Q2: Batch Normalization (30 points)

In notebook BatchNormalization.ipynb you will implement batch normalization, and use it to train deep fully-connected networks.

Q3: Dropout (10 points)

The notebook Dropout.ipynb will help you implement Dropout and explore its effects on model generalization.

Q4: Convolutional Networks (30 points)

In the IPython Notebook ConvolutionalNetworks.ipynb you will implement several new layers that are commonly used in convolutional networks.

Q5: PyTorch / TensorFlow on CIFAR-10 (10 points)

For this last part, you will be working in either TensorFlow or PyTorch, two popular and powerful deep learning frameworks. You only need to complete ONE of these two notebooks. You do NOT need to do both, and we will not be awarding extra credit to those who do.

Open up either PyTorch.ipynb or TensorFlow.ipynb. There, you will learn how the framework works, culminating in training a convolutional network of your own design on CIFAR-10 to get the best performance you can.

More information on the assignment webpage.