# Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torchvision.models.resnet import resnet50 import vision_transformer as vits dependencies = ["torch", "torchvision"] def dino_deits16(pretrained=True, **kwargs): """ DeiT-Small/16x16 pre-trained with DINO. Achieves 74.5% top-1 accuracy on ImageNet with k-NN classification. """ model = vits.__dict__["deit_small"](patch_size=16, num_classes=0, **kwargs) if pretrained: state_dict = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth", map_location="cpu", ) model.load_state_dict(state_dict, strict=True) return model def dino_deits8(pretrained=True, **kwargs): """ DeiT-Small/8x8 pre-trained with DINO. Achieves 78.3% top-1 accuracy on ImageNet with k-NN classification. """ model = vits.__dict__["deit_small"](patch_size=8, num_classes=0, **kwargs) if pretrained: state_dict = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth", map_location="cpu", ) model.load_state_dict(state_dict, strict=True) return model def dino_vitb16(pretrained=True, **kwargs): """ ViT-Base/16x16 pre-trained with DINO. Achieves 76.1% top-1 accuracy on ImageNet with k-NN classification. """ model = vits.__dict__["vit_base"](patch_size=16, num_classes=0, **kwargs) if pretrained: state_dict = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth", map_location="cpu", ) model.load_state_dict(state_dict, strict=True) return model def dino_vitb8(pretrained=True, **kwargs): """ ViT-Base/8x8 pre-trained with DINO. Achieves 77.4% top-1 accuracy on ImageNet with k-NN classification. """ model = vits.__dict__["vit_base"](patch_size=8, num_classes=0, **kwargs) if pretrained: state_dict = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth", map_location="cpu", ) model.load_state_dict(state_dict, strict=True) return model def dino_resnet50(pretrained=True, **kwargs): """ ResNet-50 pre-trained with DINO. Achieves 75.3% top-1 accuracy on ImageNet linear evaluation benchmark (requires to train `fc`). Note that `fc.weight` and `fc.bias` are randomly initialized. """ model = resnet50(pretrained=False, **kwargs) if pretrained: state_dict = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain.pth", map_location="cpu", ) model.load_state_dict(state_dict, strict=False) return model