Skip to content

datahub-project/datahub

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DataHub: A Generalized Metadata Search & Discovery Tool

Version Build Status Get on Slack PRs Welcome License


Quickstart | Documentation | Features | Roadmap | FAQ | Town Hall


DataHub

📣 Next DataHub town hall meeting on June 26th, 9am-10am PDT:

✨May 2020 Update:

Introduction

DataHub is LinkedIn's generalized metadata search & discovery tool. To learn more about DataHub, check out our LinkedIn blog post and Strata presentation. You should also visit DataHub Architecture to get a better understanding of how DataHub is implemented and DataHub Onboarding Guide to understand how to extend DataHub for your own use case.

This repository contains the complete source code for both DataHub's frontend & backend. You can also read about how we sync the changes between our the internal fork and GitHub.

Quickstart

  1. Install docker and docker-compose (if using Linux). Make sure to allocate enough hardware resources for Docker engine. Tested & confirmed config: 2 CPUs, 8GB RAM, 2GB Swap area.
  2. Open Docker either from the command line or the desktop app and ensure it is up and running.
  3. Clone this repo and cd into the root directory of the cloned repository.
  4. Run the following command to download and run all Docker containers locally:
    ./docker/quickstart/quickstart.sh
    
    This step takes a while to run the first time, and it may be difficult to tell if DataHub is fully up and running from the combined log. Please use this guide to verify that each container is running correctly.
  5. At this point, you should be able to start DataHub by opening http://localhost:9001 in your browser. You can sign in using datahub as both username and password. However, you'll notice that no data has been ingested yet.
  6. To ingest provided sample data to DataHub, switch to a new terminal window, cd into the cloned datahub repo, and run the following command:
    ./docker/ingestion/ingestion.sh
    
    After running this, you should be able to see and search sample datasets in DataHub.

Please refer to the debugging guide if you encounter any issues during the quickstart.

Documentation

Releases

See Releases page for more details. We follow the SemVer Specification when versioning the releases and adopt the Keep a Changelog convention for the changelog format.

FAQs

Frequently Asked Questions about DataHub can be found here.

Features & Roadmap

Check out DataHub's Features & Roadmap.

Contributing

We welcome contributions from the community. Please refer to our Contributing Guidelines for more details. We also have a contrib directory for incubating experimental features.

Community

Join our slack workspace for important discussions and announcements. You can also find out more about our past and upcoming town hall meetings.

Related Articles & Presentations