-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathprinting.py
1276 lines (1102 loc) · 46.8 KB
/
printing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Pretty-printing (pprint()), the 'Print' Op, debugprint() and pydotprint().
They all allow different way to print a graph or the result of an Op
in a graph(Print Op)
"""
from __future__ import absolute_import, print_function, division
from copy import copy
import logging
import os
import sys
import hashlib
import numpy as np
from six import string_types, integer_types, iteritems
from six.moves import StringIO, reduce
import theano
from theano import gof
from theano import config
from theano.gof import Op, Apply
from theano.compile import Function, debugmode, SharedVariable
pydot_imported = False
pydot_imported_msg = ""
try:
# pydot-ng is a fork of pydot that is better maintained
import pydot_ng as pd
if pd.find_graphviz():
pydot_imported = True
else:
pydot_imported_msg = "pydot-ng can't find graphviz. Install graphviz."
except ImportError:
try:
# fall back on pydot if necessary
import pydot as pd
if hasattr(pd, 'find_graphviz'):
if pd.find_graphviz():
pydot_imported = True
else:
pydot_imported_msg = "pydot can't find graphviz"
else:
pd.Dot.create(pd.Dot())
pydot_imported = True
except ImportError:
# tests should not fail on optional dependency
pydot_imported_msg = ("Install the python package pydot or pydot-ng."
" Install graphviz.")
except Exception as e:
pydot_imported_msg = "An error happened while importing/trying pydot: "
pydot_imported_msg += str(e.args)
_logger = logging.getLogger("theano.printing")
VALID_ASSOC = set(['left', 'right', 'either'])
def debugprint(obj, depth=-1, print_type=False,
file=None, ids='CHAR', stop_on_name=False,
done=None, print_storage=False, print_clients=False,
used_ids=None):
"""Print a computation graph as text to stdout or a file.
:type obj: :class:`~theano.gof.Variable`, Apply, or Function instance
:param obj: symbolic thing to print
:type depth: integer
:param depth: print graph to this depth (-1 for unlimited)
:type print_type: boolean
:param print_type: whether to print the type of printed objects
:type file: None, 'str', or file-like object
:param file: print to this file ('str' means to return a string)
:type ids: str
:param ids: How do we print the identifier of the variable
id - print the python id value
int - print integer character
CHAR - print capital character
"" - don't print an identifier
:param stop_on_name: When True, if a node in the graph has a name,
we don't print anything below it.
:type done: None or dict
:param done: A dict where we store the ids of printed node.
Useful to have multiple call to debugprint share the same ids.
:type print_storage: bool
:param print_storage: If True, this will print the storage map
for Theano functions. Combined with allow_gc=False, after the
execution of a Theano function, we see the intermediate result.
:type print_clients: bool
:param print_clients: If True, this will print for Apply node that
have more then 1 clients its clients. This help find who use
an Apply node.
:type used_ids: dict or None
:param used_ids: the id to use for some object, but maybe we only
referred to it yet.
:returns: string if `file` == 'str', else file arg
Each line printed represents a Variable in the graph.
The indentation of lines corresponds to its depth in the symbolic graph.
The first part of the text identifies whether it is an input
(if a name or type is printed) or the output of some Apply (in which case
the Op is printed).
The second part of the text is an identifier of the Variable.
If print_type is True, we add a part containing the type of the Variable
If a Variable is encountered multiple times in the depth-first search,
it is only printed recursively the first time. Later, just the Variable
identifier is printed.
If an Apply has multiple outputs, then a '.N' suffix will be appended
to the Apply's identifier, to indicate which output a line corresponds to.
"""
if not isinstance(depth, integer_types):
raise Exception("depth parameter must be an int")
if file == 'str':
_file = StringIO()
elif file is None:
_file = sys.stdout
else:
_file = file
if done is None:
done = dict()
if used_ids is None:
used_ids = dict()
used_ids = dict()
results_to_print = []
profile_list = []
order = [] # Toposort
smap = [] # storage_map
if isinstance(obj, (list, tuple, set)):
lobj = obj
else:
lobj = [obj]
for obj in lobj:
if isinstance(obj, gof.Variable):
results_to_print.append(obj)
profile_list.append(None)
smap.append(None)
order.append(None)
elif isinstance(obj, gof.Apply):
results_to_print.extend(obj.outputs)
profile_list.extend([None for item in obj.outputs])
smap.extend([None for item in obj.outputs])
order.extend([None for item in obj.outputs])
elif isinstance(obj, Function):
results_to_print.extend(obj.maker.fgraph.outputs)
profile_list.extend(
[obj.profile for item in obj.maker.fgraph.outputs])
if print_storage:
smap.extend(
[obj.fn.storage_map for item in obj.maker.fgraph.outputs])
else:
smap.extend(
[None for item in obj.maker.fgraph.outputs])
topo = obj.maker.fgraph.toposort()
order.extend(
[topo for item in obj.maker.fgraph.outputs])
elif isinstance(obj, gof.FunctionGraph):
results_to_print.extend(obj.outputs)
profile_list.extend([getattr(obj, 'profile', None)
for item in obj.outputs])
smap.extend([getattr(obj, 'storage_map', None)
for item in obj.outputs])
topo = obj.toposort()
order.extend([topo for item in obj.outputs])
elif isinstance(obj, (integer_types, float, np.ndarray)):
print(obj, file=_file)
elif isinstance(obj, (theano.In, theano.Out)):
results_to_print.append(obj.variable)
profile_list.append(None)
smap.append(None)
order.append(None)
else:
raise TypeError("debugprint cannot print an object of this type",
obj)
scan_ops = []
if any([p for p in profile_list if p is not None and p.fct_callcount > 0]):
print("""
Timing Info
-----------
--> <time> <% time> - <total time> <% total time>'
<time> computation time for this node
<% time> fraction of total computation time for this node
<total time> time for this node + total times for this node's ancestors
<% total time> total time for this node over total computation time
N.B.:
* Times include the node time and the function overhead.
* <total time> and <% total time> may over-count computation times
if inputs to a node share a common ancestor and should be viewed as a
loose upper bound. Their intended use is to help rule out potential nodes
to remove when optimizing a graph because their <total time> is very low.
""", file=_file)
for r, p, s, o in zip(results_to_print, profile_list, smap, order):
# Add the parent scan op to the list as well
if (hasattr(r.owner, 'op') and
isinstance(r.owner.op, theano.scan_module.scan_op.Scan)):
scan_ops.append(r)
debugmode.debugprint(r, depth=depth, done=done, print_type=print_type,
file=_file, order=o, ids=ids,
scan_ops=scan_ops, stop_on_name=stop_on_name,
profile=p, smap=s, used_ids=used_ids,
print_clients=print_clients)
if len(scan_ops) > 0:
print("", file=_file)
new_prefix = ' >'
new_prefix_child = ' >'
print("Inner graphs of the scan ops:", file=_file)
for s in scan_ops:
# prepare a dict which maps the scan op's inner inputs
# to its outer inputs.
if hasattr(s.owner.op, 'fn'):
# If the op was compiled, print the optimized version.
inner_inputs = s.owner.op.fn.maker.fgraph.inputs
else:
inner_inputs = s.owner.op.inputs
outer_inputs = s.owner.inputs
inner_to_outer_inputs = \
dict([(inner_inputs[i], outer_inputs[o])
for i, o in
s.owner.op.var_mappings['outer_inp_from_inner_inp']
.items()])
print("", file=_file)
debugmode.debugprint(
s, depth=depth, done=done,
print_type=print_type,
file=_file, ids=ids,
scan_ops=scan_ops,
stop_on_name=stop_on_name,
scan_inner_to_outer_inputs=inner_to_outer_inputs,
print_clients=print_clients, used_ids=used_ids)
if hasattr(s.owner.op, 'fn'):
# If the op was compiled, print the optimized version.
outputs = s.owner.op.fn.maker.fgraph.outputs
else:
outputs = s.owner.op.outputs
for idx, i in enumerate(outputs):
if hasattr(i, 'owner') and hasattr(i.owner, 'op'):
if isinstance(i.owner.op, theano.scan_module.scan_op.Scan):
scan_ops.append(i)
debugmode.debugprint(
r=i, prefix=new_prefix,
depth=depth, done=done,
print_type=print_type, file=_file,
ids=ids, stop_on_name=stop_on_name,
prefix_child=new_prefix_child,
scan_ops=scan_ops,
scan_inner_to_outer_inputs=inner_to_outer_inputs,
print_clients=print_clients, used_ids=used_ids)
if file is _file:
return file
elif file == 'str':
return _file.getvalue()
else:
_file.flush()
def _print_fn(op, xin):
for attr in op.attrs:
temp = getattr(xin, attr)
if callable(temp):
pmsg = temp()
else:
pmsg = temp
print(op.message, attr, '=', pmsg)
class Print(Op):
""" This identity-like Op print as a side effect.
This identity-like Op has the side effect of printing a message
followed by its inputs when it runs. Default behaviour is to print
the __str__ representation. Optionally, one can pass a list of the
input member functions to execute, or attributes to print.
@type message: String
@param message: string to prepend to the output
@type attrs: list of Strings
@param attrs: list of input node attributes or member functions to print.
Functions are identified through callable(), executed and
their return value printed.
:note: WARNING. This can disable some optimizations!
(speed and/or stabilization)
Detailed explanation:
As of 2012-06-21 the Print op is not known by any optimization.
Setting a Print op in the middle of a pattern that is usually
optimized out will block the optimization. for example, log(1+x)
optimizes to log1p(x) but log(1+Print(x)) is unaffected by
optimizations.
"""
view_map = {0: [0]}
__props__ = ('message', 'attrs', 'global_fn')
def __init__(self, message="", attrs=("__str__",), global_fn=_print_fn):
self.message = message
self.attrs = tuple(attrs) # attrs should be a hashable iterable
self.global_fn = global_fn
def make_node(self, xin):
xout = xin.type()
return Apply(op=self, inputs=[xin], outputs=[xout])
def perform(self, node, inputs, output_storage):
xin, = inputs
xout, = output_storage
xout[0] = xin
self.global_fn(self, xin)
def grad(self, input, output_gradients):
return output_gradients
def R_op(self, inputs, eval_points):
return [x for x in eval_points]
def __setstate__(self, dct):
dct.setdefault('global_fn', _print_fn)
self.__dict__.update(dct)
def c_code_cache_version(self):
return (1,)
class PrinterState(gof.utils.scratchpad):
def __init__(self, props=None, **more_props):
if props is None:
props = {}
elif isinstance(props, gof.utils.scratchpad):
self.__update__(props)
else:
self.__dict__.update(props)
self.__dict__.update(more_props)
# A dict from the object to print to its string
# representation. If it is a dag and not a tree, it allow to
# parse each node of the graph only once. They will still be
# printed many times
self.memo = {}
class OperatorPrinter:
def __init__(self, operator, precedence, assoc='left'):
self.operator = operator
self.precedence = precedence
self.assoc = assoc
assert self.assoc in VALID_ASSOC
def process(self, output, pstate):
if output in pstate.memo:
return pstate.memo[output]
pprinter = pstate.pprinter
node = output.owner
if node is None:
raise TypeError("operator %s cannot represent a variable that is "
"not the result of an operation" % self.operator)
# Precedence seems to be buggy, see #249
# So, in doubt, we parenthesize everything.
# outer_precedence = getattr(pstate, 'precedence', -999999)
# outer_assoc = getattr(pstate, 'assoc', 'none')
# if outer_precedence > self.precedence:
# parenthesize = True
# else:
# parenthesize = False
parenthesize = True
input_strings = []
max_i = len(node.inputs) - 1
for i, input in enumerate(node.inputs):
new_precedence = self.precedence
if (self.assoc == 'left' and i != 0 or self.assoc == 'right' and
i != max_i):
new_precedence += 1e-6
try:
old_precedence = getattr(pstate, 'precedence', None)
pstate.precedence = new_precedence
s = pprinter.process(input, pstate)
finally:
pstate.precedence = old_precedence
input_strings.append(s)
if len(input_strings) == 1:
s = self.operator + input_strings[0]
else:
s = (" %s " % self.operator).join(input_strings)
if parenthesize:
r = "(%s)" % s
else:
r = s
pstate.memo[output] = r
return r
class PatternPrinter:
def __init__(self, *patterns):
self.patterns = []
for pattern in patterns:
if isinstance(pattern, string_types):
self.patterns.append((pattern, ()))
else:
self.patterns.append((pattern[0], pattern[1:]))
def process(self, output, pstate):
if output in pstate.memo:
return pstate.memo[output]
pprinter = pstate.pprinter
node = output.owner
if node is None:
raise TypeError("Patterns %s cannot represent a variable that is "
"not the result of an operation" % self.patterns)
idx = node.outputs.index(output)
pattern, precedences = self.patterns[idx]
precedences += (1000,) * len(node.inputs)
def pp_process(input, new_precedence):
try:
old_precedence = getattr(pstate, 'precedence', None)
pstate.precedence = new_precedence
r = pprinter.process(input, pstate)
finally:
pstate.precedence = old_precedence
return r
d = dict((str(i), x)
for i, x in enumerate(pp_process(input, precedence)
for input, precedence in
zip(node.inputs, precedences)))
r = pattern % d
pstate.memo[output] = r
return r
class FunctionPrinter:
def __init__(self, *names):
self.names = names
def process(self, output, pstate):
if output in pstate.memo:
return pstate.memo[output]
pprinter = pstate.pprinter
node = output.owner
if node is None:
raise TypeError("function %s cannot represent a variable that is "
"not the result of an operation" % self.names)
idx = node.outputs.index(output)
name = self.names[idx]
new_precedence = -1000
try:
old_precedence = getattr(pstate, 'precedence', None)
pstate.precedence = new_precedence
r = "%s(%s)" % (name, ", ".join(
[pprinter.process(input, pstate) for input in node.inputs]))
finally:
pstate.precedence = old_precedence
pstate.memo[output] = r
return r
class IgnorePrinter:
def process(self, output, pstate):
if output in pstate.memo:
return pstate.memo[output]
pprinter = pstate.pprinter
node = output.owner
if node is None:
raise TypeError("function %s cannot represent a variable that is"
" not the result of an operation" % self.function)
input = node.inputs[0]
r = "%s" % pprinter.process(input, pstate)
pstate.memo[output] = r
return r
class LeafPrinter:
def process(self, output, pstate):
if output in pstate.memo:
return pstate.memo[output]
if output.name in greek:
r = greek[output.name]
else:
r = str(output)
pstate.memo[output] = r
return r
leaf_printer = LeafPrinter()
class DefaultPrinter:
def process(self, output, pstate):
if output in pstate.memo:
return pstate.memo[output]
pprinter = pstate.pprinter
node = output.owner
if node is None:
return leaf_printer.process(output, pstate)
new_precedence = -1000
try:
old_precedence = getattr(pstate, 'precedence', None)
pstate.precedence = new_precedence
r = "%s(%s)" % (str(node.op), ", ".join(
[pprinter.process(input, pstate)
for input in node.inputs]))
finally:
pstate.precedence = old_precedence
pstate.memo[output] = r
return r
default_printer = DefaultPrinter()
class PPrinter:
def __init__(self):
self.printers = []
self.printers_dict = {}
def assign(self, condition, printer):
# condition can be a class or an instance of an Op.
if isinstance(condition, (gof.Op, type)):
self.printers_dict[condition] = printer
return
self.printers.insert(0, (condition, printer))
def process(self, r, pstate=None):
if pstate is None:
pstate = PrinterState(pprinter=self)
elif isinstance(pstate, dict):
pstate = PrinterState(pprinter=self, **pstate)
if getattr(r, 'owner', None) is not None:
if r.owner.op in self.printers_dict:
return self.printers_dict[r.owner.op].process(r, pstate)
if type(r.owner.op) in self.printers_dict:
return self.printers_dict[type(r.owner.op)].process(r, pstate)
for condition, printer in self.printers:
if condition(pstate, r):
return printer.process(r, pstate)
def clone(self):
cp = copy(self)
cp.printers = list(self.printers)
cp.printers_dict = dict(self.printers_dict)
return cp
def clone_assign(self, condition, printer):
cp = self.clone()
cp.assign(condition, printer)
return cp
def process_graph(self, inputs, outputs, updates=None,
display_inputs=False):
if updates is None:
updates = {}
if not isinstance(inputs, (list, tuple)):
inputs = [inputs]
if not isinstance(outputs, (list, tuple)):
outputs = [outputs]
current = None
if display_inputs:
strings = [(0, "inputs: " + ", ".join(
map(str, list(inputs) + updates.keys())))]
else:
strings = []
pprinter = self.clone_assign(lambda pstate, r: r.name is not None and
r is not current, leaf_printer)
inv_updates = dict((b, a) for (a, b) in iteritems(updates))
i = 1
for node in gof.graph.io_toposort(list(inputs) + updates.keys(),
list(outputs) +
updates.values()):
for output in node.outputs:
if output in inv_updates:
name = str(inv_updates[output])
strings.append((i + 1000, "%s <- %s" % (
name, pprinter.process(output))))
i += 1
if output.name is not None or output in outputs:
if output.name is None:
name = 'out[%i]' % outputs.index(output)
else:
name = output.name
# backport
# name = 'out[%i]' % outputs.index(output) if output.name
# is None else output.name
current = output
try:
idx = 2000 + outputs.index(output)
except ValueError:
idx = i
if len(outputs) == 1 and outputs[0] is output:
strings.append((idx, "return %s" %
pprinter.process(output)))
else:
strings.append((idx, "%s = %s" %
(name, pprinter.process(output))))
i += 1
strings.sort()
return "\n".join(s[1] for s in strings)
def __call__(self, *args):
if len(args) == 1:
return self.process(*args)
elif len(args) == 2 and isinstance(args[1], (PrinterState, dict)):
return self.process(*args)
elif len(args) > 2:
return self.process_graph(*args)
else:
raise TypeError('Not enough arguments to call.')
use_ascii = True
if use_ascii:
special = dict(middle_dot="\\dot",
big_sigma="\\Sigma")
greek = dict(alpha="\\alpha",
beta="\\beta",
gamma="\\gamma",
delta="\\delta",
epsilon="\\epsilon")
else:
special = dict(middle_dot=u"\u00B7",
big_sigma=u"\u03A3")
greek = dict(alpha=u"\u03B1",
beta=u"\u03B2",
gamma=u"\u03B3",
delta=u"\u03B4",
epsilon=u"\u03B5")
pprint = PPrinter()
pprint.assign(lambda pstate, r: True, default_printer)
pp = pprint
"""
Print to the terminal a math-like expression.
"""
# colors not used: orange, amber#FFBF00, purple, pink,
# used by default: green, blue, grey, red
default_colorCodes = {'GpuFromHost': 'red',
'HostFromGpu': 'red',
'Scan': 'yellow',
'Shape': 'brown',
'IfElse': 'magenta',
'Elemwise': '#FFAABB', # dark pink
'Subtensor': '#FFAAFF', # purple
'Alloc': '#FFAA22', # orange
'Output': 'blue'}
def pydotprint(fct, outfile=None,
compact=True, format='png', with_ids=False,
high_contrast=True, cond_highlight=None, colorCodes=None,
max_label_size=70, scan_graphs=False,
var_with_name_simple=False,
print_output_file=True,
return_image=False,
):
"""Print to a file the graph of a compiled theano function's ops. Supports
all pydot output formats, including png and svg.
:param fct: a compiled Theano function, a Variable, an Apply or
a list of Variable.
:param outfile: the output file where to put the graph.
:param compact: if True, will remove intermediate var that don't have name.
:param format: the file format of the output.
:param with_ids: Print the toposort index of the node in the node name.
and an index number in the variable ellipse.
:param high_contrast: if true, the color that describes the respective
node is filled with its corresponding color, instead of coloring
the border
:param colorCodes: dictionary with names of ops as keys and colors as
values
:param cond_highlight: Highlights a lazy if by surrounding each of the 3
possible categories of ops with a border. The categories
are: ops that are on the left branch, ops that are on the
right branch, ops that are on both branches
As an alternative you can provide the node that represents
the lazy if
:param scan_graphs: if true it will plot the inner graph of each scan op
in files with the same name as the name given for the main
file to which the name of the scan op is concatenated and
the index in the toposort of the scan.
This index can be printed with the option with_ids.
:param var_with_name_simple: If true and a variable have a name,
we will print only the variable name.
Otherwise, we concatenate the type to the var name.
:param return_image: If True, it will create the image and return it.
Useful to display the image in ipython notebook.
.. code-block:: python
import theano
v = theano.tensor.vector()
from IPython.display import SVG
SVG(theano.printing.pydotprint(v*2, return_image=True,
format='svg'))
In the graph, ellipses are Apply Nodes (the execution of an op)
and boxes are variables. If variables have names they are used as
text (if multiple vars have the same name, they will be merged in
the graph). Otherwise, if the variable is constant, we print its
value and finally we print the type + a unique number to prevent
multiple vars from being merged. We print the op of the apply in
the Apply box with a number that represents the toposort order of
application of those Apply. If an Apply has more than 1 input, we
label each edge between an input and the Apply node with the
input's index.
Variable color code::
- Cyan boxes are SharedVariable, inputs and/or outputs) of the graph,
- Green boxes are inputs variables to the graph,
- Blue boxes are outputs variables of the graph,
- Grey boxes are variables that are not outputs and are not used,
Default apply node code::
- Red ellipses are transfers from/to the gpu
- Yellow are scan node
- Brown are shape node
- Magenta are IfElse node
- Dark pink are elemwise node
- Purple are subtensor
- Orange are alloc node
For edges, they are black by default. If a node returns a view
of an input, we put the corresponding input edge in blue. If it
returns a destroyed input, we put the corresponding edge in red.
.. note::
Since October 20th, 2014, this print the inner function of all
scan separately after the top level debugprint output.
"""
if colorCodes is None:
colorCodes = default_colorCodes
if outfile is None:
outfile = os.path.join(config.compiledir, 'theano.pydotprint.' +
config.device + '.' + format)
if isinstance(fct, Function):
profile = getattr(fct, "profile", None)
outputs = fct.maker.fgraph.outputs
topo = fct.maker.fgraph.toposort()
elif isinstance(fct, gof.FunctionGraph):
profile = None
outputs = fct.outputs
topo = fct.toposort()
else:
if isinstance(fct, gof.Variable):
fct = [fct]
elif isinstance(fct, gof.Apply):
fct = fct.outputs
assert isinstance(fct, (list, tuple))
assert all(isinstance(v, gof.Variable) for v in fct)
fct = gof.FunctionGraph(inputs=gof.graph.inputs(fct),
outputs=fct)
profile = None
outputs = fct.outputs
topo = fct.toposort()
if not pydot_imported:
raise RuntimeError("Failed to import pydot. You must install graphviz"
" and either pydot or pydot-ng for "
"`pydotprint` to work.",
pydot_imported_msg)
g = pd.Dot()
if cond_highlight is not None:
c1 = pd.Cluster('Left')
c2 = pd.Cluster('Right')
c3 = pd.Cluster('Middle')
cond = None
for node in topo:
if (node.op.__class__.__name__ == 'IfElse' and
node.op.name == cond_highlight):
cond = node
if cond is None:
_logger.warn("pydotprint: cond_highlight is set but there is no"
" IfElse node in the graph")
cond_highlight = None
if cond_highlight is not None:
def recursive_pass(x, ls):
if not x.owner:
return ls
else:
ls += [x.owner]
for inp in x.inputs:
ls += recursive_pass(inp, ls)
return ls
left = set(recursive_pass(cond.inputs[1], []))
right = set(recursive_pass(cond.inputs[2], []))
middle = left.intersection(right)
left = left.difference(middle)
right = right.difference(middle)
middle = list(middle)
left = list(left)
right = list(right)
var_str = {}
var_id = {}
all_strings = set()
def var_name(var):
if var in var_str:
return var_str[var], var_id[var]
if var.name is not None:
if var_with_name_simple:
varstr = var.name
else:
varstr = 'name=' + var.name + " " + str(var.type)
elif isinstance(var, gof.Constant):
dstr = 'val=' + str(np.asarray(var.data))
if '\n' in dstr:
dstr = dstr[:dstr.index('\n')]
varstr = '%s %s' % (dstr, str(var.type))
elif (var in input_update and
input_update[var].name is not None):
varstr = input_update[var].name
if not var_with_name_simple:
varstr += str(var.type)
else:
# a var id is needed as otherwise var with the same type will be
# merged in the graph.
varstr = str(var.type)
if len(varstr) > max_label_size:
varstr = varstr[:max_label_size - 3] + '...'
var_str[var] = varstr
var_id[var] = str(id(var))
all_strings.add(varstr)
return varstr, var_id[var]
apply_name_cache = {}
apply_name_id = {}
def apply_name(node):
if node in apply_name_cache:
return apply_name_cache[node], apply_name_id[node]
prof_str = ''
if profile:
time = profile.apply_time.get(node, 0)
# second, %fct time in profiler
if profile.fct_callcount == 0 or profile.fct_call_time == 0:
pf = 0
else:
pf = time * 100 / profile.fct_call_time
prof_str = ' (%.3fs,%.3f%%)' % (time, pf)
applystr = str(node.op).replace(':', '_')
applystr += prof_str
if (applystr in all_strings) or with_ids:
idx = ' id=' + str(topo.index(node))
if len(applystr) + len(idx) > max_label_size:
applystr = (applystr[:max_label_size - 3 - len(idx)] + idx +
'...')
else:
applystr = applystr + idx
elif len(applystr) > max_label_size:
applystr = applystr[:max_label_size - 3] + '...'
idx = 1
while applystr in all_strings:
idx += 1
suffix = ' id=' + str(idx)
applystr = (applystr[:max_label_size - 3 - len(suffix)] +
'...' +
suffix)
all_strings.add(applystr)
apply_name_cache[node] = applystr
apply_name_id[node] = str(id(node))
return applystr, apply_name_id[node]
# Update the inputs that have an update function
input_update = {}
reverse_input_update = {}
# Here outputs can be the original list, as we should not change
# it, we must copy it.
outputs = list(outputs)
if isinstance(fct, Function):
function_inputs = zip(fct.maker.expanded_inputs, fct.maker.fgraph.inputs)
for i, fg_ii in reversed(list(function_inputs)):
if i.update is not None:
k = outputs.pop()
# Use the fgaph.inputs as it isn't the same as maker.inputs
input_update[k] = fg_ii
reverse_input_update[fg_ii] = k
apply_shape = 'ellipse'
var_shape = 'box'
for node_idx, node in enumerate(topo):
astr, aid = apply_name(node)
use_color = None
for opName, color in iteritems(colorCodes):
if opName in node.op.__class__.__name__:
use_color = color
if use_color is None:
nw_node = pd.Node(aid, label=astr, shape=apply_shape)
elif high_contrast:
nw_node = pd.Node(aid, label=astr, style='filled',
fillcolor=use_color,
shape=apply_shape)
else:
nw_node = pd.Node(aid, label=astr,
color=use_color, shape=apply_shape)
g.add_node(nw_node)
if cond_highlight:
if node in middle:
c3.add_node(nw_node)
elif node in left:
c1.add_node(nw_node)
elif node in right:
c2.add_node(nw_node)
for idx, var in enumerate(node.inputs):
varstr, varid = var_name(var)
label = ""
if len(node.inputs) > 1:
label = str(idx)
param = {}
if label:
param['label'] = label
if hasattr(node.op, 'view_map') and idx in reduce(
list.__add__, node.op.view_map.values(), []):
param['color'] = colorCodes['Output']
elif hasattr(node.op, 'destroy_map') and idx in reduce(
list.__add__, node.op.destroy_map.values(), []):
param['color'] = 'red'
if var.owner is None:
color = 'green'
if isinstance(var, SharedVariable):
# Input are green, output blue
# Mixing blue and green give cyan! (input and output var)
color = "cyan"
if high_contrast:
g.add_node(pd.Node(varid,
style='filled',
fillcolor=color,
label=varstr,
shape=var_shape))
else:
g.add_node(pd.Node(varid,
color=color,
label=varstr,
shape=var_shape))
g.add_edge(pd.Edge(varid, aid, **param))
elif var.name or not compact or var in outputs:
g.add_edge(pd.Edge(varid, aid, **param))
else:
# no name, so we don't make a var ellipse
if label:
label += " "
label += str(var.type)
if len(label) > max_label_size:
label = label[:max_label_size - 3] + '...'
param['label'] = label
g.add_edge(pd.Edge(apply_name(var.owner)[1], aid, **param))
for idx, var in enumerate(node.outputs):
varstr, varid = var_name(var)
out = var in outputs
label = ""
if len(node.outputs) > 1:
label = str(idx)
if len(label) > max_label_size:
label = label[:max_label_size - 3] + '...'
param = {}
if label:
param['label'] = label
if out or var in input_update:
g.add_edge(pd.Edge(aid, varid, **param))
if high_contrast:
g.add_node(pd.Node(varid, style='filled',
label=varstr,
fillcolor=colorCodes['Output'], shape=var_shape))
else: