-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
bifpn.py
300 lines (270 loc) · 10.7 KB
/
bifpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import ConvNormLayer
from ..shape_spec import ShapeSpec
__all__ = ['BiFPN']
class SeparableConvLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels=None,
kernel_size=3,
norm_type='bn',
norm_groups=32,
act='swish'):
super(SeparableConvLayer, self).__init__()
assert norm_type in ['bn', 'sync_bn', 'gn', None]
assert act in ['swish', 'relu', None]
self.in_channels = in_channels
if out_channels is None:
self.out_channels = self.in_channels
self.norm_type = norm_type
self.norm_groups = norm_groups
self.depthwise_conv = nn.Conv2D(
in_channels,
in_channels,
kernel_size,
padding=kernel_size // 2,
groups=in_channels,
bias_attr=False)
self.pointwise_conv = nn.Conv2D(in_channels, self.out_channels, 1)
# norm type
if self.norm_type in ['bn', 'sync_bn']:
self.norm = nn.BatchNorm2D(self.out_channels)
elif self.norm_type == 'gn':
self.norm = nn.GroupNorm(
num_groups=self.norm_groups, num_channels=self.out_channels)
# activation
if act == 'swish':
self.act = nn.Swish()
elif act == 'relu':
self.act = nn.ReLU()
def forward(self, x):
if self.act is not None:
x = self.act(x)
out = self.depthwise_conv(x)
out = self.pointwise_conv(out)
if self.norm_type is not None:
out = self.norm(out)
return out
class BiFPNCell(nn.Layer):
def __init__(self,
channels=256,
num_levels=5,
eps=1e-5,
use_weighted_fusion=True,
kernel_size=3,
norm_type='bn',
norm_groups=32,
act='swish'):
super(BiFPNCell, self).__init__()
self.channels = channels
self.num_levels = num_levels
self.eps = eps
self.use_weighted_fusion = use_weighted_fusion
# up
self.conv_up = nn.LayerList([
SeparableConvLayer(
self.channels,
kernel_size=kernel_size,
norm_type=norm_type,
norm_groups=norm_groups,
act=act) for _ in range(self.num_levels - 1)
])
# down
self.conv_down = nn.LayerList([
SeparableConvLayer(
self.channels,
kernel_size=kernel_size,
norm_type=norm_type,
norm_groups=norm_groups,
act=act) for _ in range(self.num_levels - 1)
])
if self.use_weighted_fusion:
self.up_weights = self.create_parameter(
shape=[self.num_levels - 1, 2],
attr=ParamAttr(initializer=Constant(1.)))
self.down_weights = self.create_parameter(
shape=[self.num_levels - 1, 3],
attr=ParamAttr(initializer=Constant(1.)))
def _feature_fusion_cell(self,
conv_layer,
lateral_feat,
sampling_feat,
route_feat=None,
weights=None):
if self.use_weighted_fusion:
weights = F.relu(weights)
weights = weights / (weights.sum() + self.eps)
if route_feat is not None:
out_feat = weights[0] * lateral_feat + \
weights[1] * sampling_feat + \
weights[2] * route_feat
else:
out_feat = weights[0] * lateral_feat + \
weights[1] * sampling_feat
else:
if route_feat is not None:
out_feat = lateral_feat + sampling_feat + route_feat
else:
out_feat = lateral_feat + sampling_feat
out_feat = conv_layer(out_feat)
return out_feat
def forward(self, feats):
# feats: [P3 - P7]
lateral_feats = []
# up
up_feature = feats[-1]
for i, feature in enumerate(feats[::-1]):
if i == 0:
lateral_feats.append(feature)
else:
shape = feature.shape
up_feature = F.interpolate(
up_feature, size=[shape[2], shape[3]])
lateral_feature = self._feature_fusion_cell(
self.conv_up[i - 1],
feature,
up_feature,
weights=self.up_weights[i - 1]
if self.use_weighted_fusion else None)
lateral_feats.append(lateral_feature)
up_feature = lateral_feature
out_feats = []
# down
down_feature = lateral_feats[-1]
for i, (lateral_feature,
route_feature) in enumerate(zip(lateral_feats[::-1], feats)):
if i == 0:
out_feats.append(lateral_feature)
else:
down_feature = F.max_pool2d(down_feature, 3, 2, 1)
if i == len(feats) - 1:
route_feature = None
weights = self.down_weights[
i - 1][:2] if self.use_weighted_fusion else None
else:
weights = self.down_weights[
i - 1] if self.use_weighted_fusion else None
out_feature = self._feature_fusion_cell(
self.conv_down[i - 1],
lateral_feature,
down_feature,
route_feature,
weights=weights)
out_feats.append(out_feature)
down_feature = out_feature
return out_feats
@register
@serializable
class BiFPN(nn.Layer):
"""
Bidirectional Feature Pyramid Network, see https://arxiv.org/abs/1911.09070
Args:
in_channels (list[int]): input channels of each level which can be
derived from the output shape of backbone by from_config.
out_channel (int): output channel of each level.
num_extra_levels (int): the number of extra stages added to the last level.
default: 2
fpn_strides (List): The stride of each level.
num_stacks (int): the number of stacks for BiFPN, default: 1.
use_weighted_fusion (bool): use weighted feature fusion in BiFPN, default: True.
norm_type (string|None): the normalization type in BiFPN module. If
norm_type is None, norm will not be used after conv and if
norm_type is string, bn, gn, sync_bn are available. default: bn.
norm_groups (int): if you use gn, set this param.
act (string|None): the activation function of BiFPN.
"""
def __init__(self,
in_channels=(512, 1024, 2048),
out_channel=256,
num_extra_levels=2,
fpn_strides=[8, 16, 32, 64, 128],
num_stacks=1,
use_weighted_fusion=True,
norm_type='bn',
norm_groups=32,
act='swish'):
super(BiFPN, self).__init__()
assert num_stacks > 0, "The number of stacks of BiFPN is at least 1."
assert norm_type in ['bn', 'sync_bn', 'gn', None]
assert act in ['swish', 'relu', None]
assert num_extra_levels >= 0, \
"The `num_extra_levels` must be non negative(>=0)."
self.in_channels = in_channels
self.out_channel = out_channel
self.num_extra_levels = num_extra_levels
self.num_stacks = num_stacks
self.use_weighted_fusion = use_weighted_fusion
self.norm_type = norm_type
self.norm_groups = norm_groups
self.act = act
self.num_levels = len(self.in_channels) + self.num_extra_levels
if len(fpn_strides) != self.num_levels:
for i in range(self.num_extra_levels):
fpn_strides += [fpn_strides[-1] * 2]
self.fpn_strides = fpn_strides
self.lateral_convs = nn.LayerList()
for in_c in in_channels:
self.lateral_convs.append(
ConvNormLayer(in_c, self.out_channel, 1, 1))
if self.num_extra_levels > 0:
self.extra_convs = nn.LayerList()
for i in range(self.num_extra_levels):
if i == 0:
self.extra_convs.append(
ConvNormLayer(self.in_channels[-1], self.out_channel, 3,
2))
else:
self.extra_convs.append(nn.MaxPool2D(3, 2, 1))
self.bifpn_cells = nn.LayerList()
for i in range(self.num_stacks):
self.bifpn_cells.append(
BiFPNCell(
self.out_channel,
self.num_levels,
use_weighted_fusion=self.use_weighted_fusion,
norm_type=self.norm_type,
norm_groups=self.norm_groups,
act=self.act))
@classmethod
def from_config(cls, cfg, input_shape):
return {
'in_channels': [i.channels for i in input_shape],
'fpn_strides': [i.stride for i in input_shape]
}
@property
def out_shape(self):
return [
ShapeSpec(
channels=self.out_channel, stride=s) for s in self.fpn_strides
]
def forward(self, feats):
assert len(feats) == len(self.in_channels)
fpn_feats = []
for conv_layer, feature in zip(self.lateral_convs, feats):
fpn_feats.append(conv_layer(feature))
if self.num_extra_levels > 0:
feat = feats[-1]
for conv_layer in self.extra_convs:
feat = conv_layer(feat)
fpn_feats.append(feat)
for bifpn_cell in self.bifpn_cells:
fpn_feats = bifpn_cell(fpn_feats)
return fpn_feats