-
-
Notifications
You must be signed in to change notification settings - Fork 333
/
mkrefs.ttl
485 lines (428 loc) · 21.6 KB
/
mkrefs.ttl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
@prefix derw: <https://derwen.ai/ns/v1#> .
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix cito: <http://purl.org/spar/cito/> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix lcsh: <http://id.loc.gov/authorities/subjects/> .
@prefix madsrdf: <http://www.loc.gov/mads/rdf/v1#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix wd: <http://www.wikidata.org/entity/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
derw:citeKey rdfs:domain bibo:Document ;
rdfs:range xsd:string ;
skos:definition "bibliographic citekey for team use in related publications"@en ;
.
derw:openAccess rdfs:domain bibo:Document ;
rdfs:range dct:identifier ;
skos:definition "open access URL for a cited document"@en ;
.
<https://derwen.ai/s/7zk738z8fn9t>
a derw:Author ;
foaf:name "David Gleich"@en ;
dct:identifier <https://orcid.org/0000-0002-8107-6474>
.
<https://derwen.ai/s/2t2mbms2x4p3>
a derw:Author ;
foaf:name "Mike Williams"@en ;
dct:identifier <https://scholar.google.com/citations?user=MZ648iUAAAAJ>
.
<https://derwen.ai/s/v3rq24nf6426>
a derw:Author ;
foaf:name "Cornelia Caragea"@en ;
dct:identifier <https://dblp.org/pid/69/6680.html>
.
<https://derwen.ai/s/y3w6mvj2r9wv>
a derw:Author ;
foaf:name "Corina Florescu"@en ;
dct:identifier <https://dblp.org/pid/195/8141.html>
.
<https://derwen.ai/s/rjsnrs5jhswk>
a derw:Author ;
foaf:name "Ashkan Kazemi"@en ;
dct:identifier <https://dblp.org/pid/277/9400.html>
.
<https://derwen.ai/s/svmndvvnndkv>
a derw:Author ;
foaf:name "Verónica Pérez-Rosas"@en ;
dct:identifier <https://dblp.org/pid/53/9684.html>
.
<https://derwen.ai/s/wwrw59tbtzzp>
a derw:Author ;
foaf:name "Rada Mihalcea"@en ;
dct:identifier <https://dblp.org/pid/m/RadaMihalcea.html>
.
<https://derwen.ai/s/vnfvsgvc9gfy>
a derw:Author ;
foaf:name "Paul Tarau"@en ;
dct:identifier <https://dblp.org/pid/t/PaulTarau.html>
.
<https://derwen.ai/s/mk6xj6cfrrxg>
a derw:Author ;
foaf:name "Lawrence Page"@en ;
dct:identifier <https://dblp.org/pid/p/LawrencePage.html>
.
<https://derwen.ai/s/j636dghdyws5>
a derw:Author ;
foaf:name "Sergey Brin"@en ;
dct:identifier <https://dblp.org/pid/b/SergeyBrin.html>
.
<https://derwen.ai/s/9hhpmgjs7kwt>
a derw:Author ;
foaf:name "Rajeev Motwani"@en ;
dct:identifier <https://dblp.org/pid/m/RajeevMotwani.html>
.
<https://derwen.ai/s/jdxk7fz84nzq>
a derw:Author ;
foaf:name "Terry Winograd"@en ;
dct:identifier <https://dblp.org/pid/w/TerryWinograd.html>
.
<urn:issn:0891-2017>
a bibo:Journal ;
bibo:shortTitle "Comput Linguist Assoc Comput Linguis"@en ;
dct:title "Computational Linguistics"@en ;
dct:identifier <https://www.mitpressjournals.org/loi/coli>
.
<urn:issn:0036-1445>
a bibo:Journal ;
bibo:shortTitle "SIAM Review"@en ;
dct:title "Society for Industrial and Applied Mathematics"@en ;
dct:identifier <https://www.siam.org/publications/journals/siam-review-sirev>
.
<https://www.aclweb.org/anthology/venues/emnlp/>
a bibo:Proceedings ;
bibo:shortTitle "EMNLP"@en ;
dct:title "Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing"@en ;
dct:Date "2004" ;
dct:identifier <https://www.aclweb.org/anthology/venues/emnlp/> ;
dct:publisher <https://www.aclweb.org/portal/>
.
<urn:issn:1525-2477>
a bibo:Journal ;
bibo:shortTitle "COLING"@en ;
dct:title "Proceedings - International Conference on Computational Linguistics"@en ;
dct:identifier <https://www.aclweb.org/anthology/venues/coling/>
.
<http://ilpubs.stanford.edu:8090/>
a bibo:Collection ;
bibo:shortTitle "Stanford InfoLab"@en ;
dct:title "Stanford InfoLab"@en ;
dct:identifier <http://infolab.stanford.edu/>
.
<https://doi.org/10.18653/v1/P17-1102>
a bibo:Article ;
derw:citeKey "florescuc17"@en ;
derw:openAccess <https://www.aclweb.org/anthology/P17-1102.pdf> ;
dct:title "PositionRank: An Unsupervised Approach to Keyphrase Extraction from Scholarly Documents"@en ;
dct:isPartOf <urn:issn:0891-2017> ;
dct:language "en" ;
dct:Date "2017-07-30" ;
bibo:pageStart "1105" ;
bibo:pageEnd "1115" ;
bibo:authorList (
<https://derwen.ai/s/y3w6mvj2r9wv>
<https://derwen.ai/s/v3rq24nf6426>
) ;
bibo:doi "10.18653/v1/P17-1102" ;
bibo:abstract "The large and growing amounts of online scholarly data present both challenges and opportunities to enhance knowledge discovery. One such challenge is to automatically extract a small set of keyphrases from a document that can accurately describe the document’s content and can facilitate fast information processing. In this paper, we propose PositionRank, an unsupervised model for keyphrase extraction from scholarly documents that incorporates information from all positions of a word’s occurrences into a biased PageRank. Our model obtains remarkable improvements in performance over PageRank models that do not take into account word positions as well as over strong baselines for this task. Specifically, on several datasets of research papers, PositionRank achieves improvements as high as 29.09%."@en
.
<https://doi.org/10.1137/140976649>
a bibo:Article ;
derw:citeKey "gleich15"@en ;
derw:openAccess <https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202015%20-%20prbeyond.pdf> ;
dct:title "PageRank Beyond the Web"@en ;
dct:language "en" ;
dct:Date "2015-08-06" ;
dct:isPartOf <urn:issn:0036-1445> ;
bibo:volume "57" ;
bibo:issue "3" ;
bibo:pageStart "321" ;
bibo:pageEnd "363" ;
bibo:authorList (
<https://derwen.ai/s/7zk738z8fn9t>
) ;
bibo:doi "10.1137/140976649" ;
bibo:abstract "Google's PageRank method was developed to evaluate the importance of web-pages via their link structure. The mathematics of PageRank, however, are entirely general and apply to any graph or network in any domain. Thus, PageRank is now regularly used in bibliometrics, social and information network analysis, and for link prediction and recommendation. It's even used for systems analysis of road networks, as well as biology, chemistry, neuroscience, and physics. We'll see the mathematics and ideas that unite these diverse applications."@en
.
<https://doi.org/10.18653/v1/2020.coling-main.144>
a bibo:Article ;
derw:citeKey "kazemi-etal-2020-biased"@en ;
derw:openAccess <https://www.aclweb.org/anthology/2020.coling-main.144.pdf> ;
dct:title "Biased TextRank: Unsupervised Graph-Based Content Extraction"@en ;
dct:language "en" ;
dct:Date "2020-12-08" ;
dct:isPartOf <urn:issn:1525-2477> ;
bibo:volume "28" ;
bibo:pageStart "1642" ;
bibo:pageEnd "1652" ;
bibo:authorList (
<https://derwen.ai/s/rjsnrs5jhswk>
<https://derwen.ai/s/svmndvvnndkv>
<https://derwen.ai/s/wwrw59tbtzzp>
) ;
bibo:doi "10.18653/v1/2020.coling-main.144" ;
bibo:abstract "We introduce Biased TextRank, a graph-based content extraction method inspired by the popular TextRank algorithm that ranks text spans according to their importance for language processing tasks and according to their relevance to an input 'focus'. Biased TextRank enables focused content extraction for text by modifying the random restarts in the execution of TextRank. The random restart probabilities are assigned based on the relevance of the graph nodes to the focus of the task. We present two applications of Biased TextRank: focused summarization and explanation extraction, and show that our algorithm leads to improved performance on two different datasets by significant ROUGE-N score margins. Much like its predecessor, Biased TextRank is unsupervised, easy to implement and orders of magnitude faster and lighter than current state-of-the-art Natural Language Processing methods for similar tasks."@en
.
<http://ilpubs.stanford.edu:8090/422/>
a bibo:Article ;
derw:citeKey "page1998"@en ;
derw:openAccess <http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf> ;
dct:title "The PageRank Citation Ranking: Bringing Order to the Web"@en ;
dct:language "en" ;
dct:Date "1999-11-11" ;
dct:isPartOf <http://ilpubs.stanford.edu:8090/> ;
bibo:authorList (
<https://derwen.ai/s/mk6xj6cfrrxg>
<https://derwen.ai/s/j636dghdyws5>
<https://derwen.ai/s/9hhpmgjs7kwt>
<https://derwen.ai/s/jdxk7fz84nzq>
) ;
bibo:abstract "The importance of a Web page is an inherently subjective matter, which depends on the readers interests, knowledge and attitudes. But there is still much that can be said objectively about the relative importance of Web pages. This paper describes PageRank, a method for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them. We compare PageRank to an idealized random Web surfer. We show how to efficiently compute PageRank for large numbers of pages. And, we show how to apply PageRank to search and to user navigation."@en
.
<https://www.aclweb.org/anthology/W04-3252/>
a bibo:Article ;
derw:citeKey "mihalcea04textrank"@en ;
derw:openAccess <https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf> ;
dct:title "TextRank: Bringing Order into Text"@en ;
dct:language "en" ;
dct:Date "2004-07-25" ;
dct:isPartOf <https://www.aclweb.org/anthology/venues/emnlp/> ;
bibo:pageStart "404" ;
bibo:pageEnd "411" ;
bibo:authorList (
<https://derwen.ai/s/wwrw59tbtzzp>
<https://derwen.ai/s/vnfvsgvc9gfy>
) ;
bibo:abstract "In this paper, the authors introduce TextRank, a graph-based ranking model for text processing, and show how this model can be successfully used in natural language applications."@en
.
<https://mike.place/talks/pygotham/>
a bibo:Slideshow ;
derw:citeKey "williams2016"@en ;
dct:title "Summarizing documents"@en ;
dct:language "en" ;
dct:Date "2016-09-25" ;
bibo:presentedAt <https://2016.pygotham.org/> ;
bibo:authorList (
<https://derwen.ai/s/2t2mbms2x4p3>
) ;
bibo:abstract "I've recently given a couple of talks (PyGotham video, PyGotham slides, Strata NYC slides) about text summarization. I cover three ways of automatically summarizing text. One is an extremely simple algorithm from the 1950s, one uses Latent Dirichlet Allocation, and one uses skipthoughts and recurrent neural networks. The talk is conceptual, and avoids code and mathematics. So here is a list of resources if you're interested in text summarization and want to dive deeper. This list useful is hopefully also useful if you're interested in topic modelling or neural networks for other reasons."@en
.
derw:Topic a skos:Concept ,
madsrdf:Topic ,
madsrdf:Authority ;
skos:prefLabel "Topic"@en ;
dct:identifier wd:Q1969448 ;
skos:definition "Subject heading used for classifying content and navigating discovery within it."@en ;
.
derw:topic_Abstractive_Summarization
a derw:Topic ;
skos:prefLabel "abstractive summarization"@en ;
skos:closeMatch <https://paperswithcode.com/task/abstractive-text-summarization> ;
skos:broader derw:topic_Summarization ;
skos:definition "Generating a short, concise summary which captures salient ideas of the source text, potentially using new phrases and sentences that may not appear in the source."@en
.
derw:topic_Cloud_Computing a derw:Topic ;
skos:prefLabel "cloud computing"@en ;
skos:altLabel "cloud"@en ;
skos:closeMatch wd:Q483639 ,
lcsh:sh2008004883 ,
<https://csrc.nist.gov/publications/detail/sp/800-145/final> ,
<https://rise.cs.berkeley.edu/blog/a-berkeley-view-on-serverless-computing/> ;
skos:broader <https://derwen.ai/d/computer_science> ;
skos:definition "The on-demand availability of computing resources over the Internet without direct active management by the user, often paid for on a short-term basis, giving the illusion of infinite computing resources available and thereby eliminating the need to plan far ahead for provisioning."@en
.
derw:topic_Computable_Content a derw:Topic ;
skos:prefLabel "computable content"@en ;
skos:closeMatch <https://www.slideshare.net/pacoid/computable-content> ,
<https://youtu.be/EPftGvsXonc> ,
<https://www.wolfram.com/cdf/> ;
skos:broader <https://derwen.ai/d/computer_science> ;
skos:definition "Interactive learning materials which leverage remote computation, e.g., Jupyter notebooks."@en
.
derw:topic_Coreference_Resolution
a derw:Topic ;
skos:prefLabel "coreference resolution"@en ;
skos:closeMatch wd:Q63087 ,
<https://paperswithcode.com/task/coreference-resolution> ,
<http://nlpprogress.com/english/coreference_resolution.html> ;
skos:broader derw:topic_Natural_Language ;
skos:definition "Clustering mentions within a text that refer to the same underlying entities."@en
.
derw:topic_Data_Science a derw:Topic ;
skos:prefLabel "data science"@en ;
skos:closeMatch wd:Q2374463 ,
<https://projecteuclid.org/euclid.aoms/1177704711> ,
<https://ischoolonline.berkeley.edu/data-science/what-is-data-science/> ,
<https://hbr.org/2018/11/curiosity-driven-data-science> ,
<https://community.ibm.com/community/user/datascience/blogs/paco-nathan/2019/03/04/what-is-data-science> ;
skos:broader <https://derwen.ai/d/artificial_intelligence> ;
skos:definition "An interdisciplinary field which emerged from industry not academia, focused on deriving insights from data, emphasizing how to leverage curiosity and domain expertise, and applying increasingly advanced mathematics for novel business cases in response to surges in data rates and compute resources."@en
.
derw:topic_Data_Strategy a derw:Topic ;
skos:prefLabel "data strategy"@en ;
skos:broader <https://derwen.ai/d/computer_science> ;
skos:definition "The tools, processes, and practices that define how to manage and leverage data to make informed decisions."@en
.
derw:topic_Deep_Learning
a derw:Topic ;
skos:prefLabel "deep learning"@en ;
skos:altLabel "DL"@en ;
skos:closeMatch wd:Q197536 ,
<https://en.wikipedia.org/wiki/Deep_learning> ;
skos:broader <https://derwen.ai/d/machine_learning> ;
skos:definition "A family of machine learning methods based on artificial neural networks which use representation learning."@en
.
derw:topic_Eigenvector_Centrality
a derw:Topic ;
skos:prefLabel "eigenvector centrality"@en ;
skos:closeMatch wd:Q28401090 ,
<https://demonstrations.wolfram.com/NetworkCentralityUsingEigenvectors/> ;
skos:broader derw:topic_Graph_Algorithms ;
skos:definition "Measuring the influence of a node within a network."@en
.
derw:topic_Entity_Linking
a derw:Topic ;
skos:prefLabel "entity linking"@en ;
skos:broader derw:topic_Named_Entity_Recognition ,
derw:topic_Knowledge_Graph ;
skos:closeMatch wd:Q17012245 ,
<http://nlpprogress.com/english/entity_linking.html> ,
<https://paperswithcode.com/task/entity-linking> ;
skos:definition "Recognizing named entities within a text, then disambiguating them by linking to specific contexts in a knowledge graph."@en
.
derw:topic_Extractive_Summarization
a derw:Topic ;
skos:prefLabel "extractive summarization"@en ;
skos:closeMatch <https://paperswithcode.com/task/extractive-summarization> ;
skos:broader derw:topic_Summarization ;
skos:definition "Summarizing the source text by identifying a subset of the sentences as the most important excerpts, then generating a sequence of them verbatim."@en
.
derw:topic_Graph_Algorithms
a derw:Topic ;
skos:prefLabel "graph algorithms"@en ;
skos:closeMatch lcsh:sh2002004605 ,
<https://networkx.org/documentation/stable/reference/algorithms/index.html> ;
skos:broader <https://derwen.ai/d/computer_science> ;
skos:definition "A family of algorithms that operation on graphs for network analysis, measurement, ranking, partitioning, and other methods that leverage graph theory."@en
.
derw:topic_Knowledge_Graph
a derw:Topic ;
skos:prefLabel "knowledge graph"@en ;
skos:altLabel "KG"@en ;
skos:closeMatch wd:Q33002955 ,
<https://www.poolparty.biz/what-is-a-knowledge-graph/> ;
skos:broader <https://derwen.ai/d/artificial_intelligence> ;
skos:definition "A knowledge base that uses a graph-structured data model, representing and annotating interlinked descriptions of entities, with an overlay of semantic metadata."@en
.
derw:topic_Knowledge_Graph_Conference a derw:Topic ;
skos:prefLabel "knowledge graph conference"@en ;
skos:altLabel "KGC"@en ;
skos:closeMatch <https://www.knowledgegraph.tech/> ;
skos:broader derw:topic_Knowledge_Graph ;
skos:definition "Founded in 2019 at Columbia University, The Knowledge Graphs Conference is emerging as the premiere source of learning around knowledge graph technologies. We believe knowledge graphs are an underutilized yet essential force for solving complex societal challenges like climate change, democratizing access to knowledge and opportunity, and capturing business value made possible by the AI revolution."@en
.
derw:topic_Language_Model
a derw:Topic ;
skos:prefLabel "language model"@en ;
skos:broader derw:topic_Natural_Language ,
<https://derwen.ai/d/machine_learning> ;
skos:closeMatch wd:Q3621696 ,
<http://nlpprogress.com/english/language_modeling.html> ,
<https://paperswithcode.com/task/language-modelling> ;
skos:definition "A statistical model used for predicting the next word or character within a document."@en
.
derw:topic_Lemma_Graph
a derw:Topic ;
skos:prefLabel "lemma graph"@en ;
skos:broader derw:topic_Textgraphs ;
cito:usesMethodIn "mihalcea04textrank"@en ;
skos:definition "A graph data structure used to represent links among phrase extracted from a source text, during the operation of the TextRank algorithm."@en
.
derw:topic_Natural_Language
a derw:Topic ;
skos:prefLabel "natural language"@en ;
skos:altLabel "NLP"@en ;
skos:closeMatch wd:Q30642 ,
lcsh:sh88002425 ,
<https://plato.stanford.edu/entries/computational-linguistics/> ;
skos:broader <https://derwen.ai/d/artificial_intelligence> ;
skos:definition "Intersection of computer science and linguistics, used to leverage data in the form of text, speech, and images to identify structure and meaning. Also used for enabling people and computer-based agents to interact using natural language."@en
.
derw:topic_Named_Entity_Recognition
a derw:Topic ;
skos:prefLabel "named entity recognition"@en ;
skos:altLabel "NER"@en ;
skos:broader derw:topic_Phrase_Extraction ;
skos:closeMatch wd:Q403574 ,
<https://paperswithcode.com/task/named-entity-recognition-ner> ,
<http://nlpprogress.com/english/named_entity_recognition.html> ;
skos:definition "Extracting mentions of *named entities* from unstructured text, then annotating them with pre-defined categories."@en
.
derw:topic_Personalized_PageRank
a derw:Topic ;
skos:prefLabel "personalized pagerank"@en ;
skos:broader derw:topic_Eigenvector_Centrality ;
cito:usesMethodIn "page1998"@en , "gleich15"@en ;
skos:definition "Using the *personalized teleportation behaviors* originally described for the PageRank algorithm to focus ranked results within a neighborhood of the graph, given a set of nodes as input."@en
.
derw:topic_Phrase_Extraction
a derw:Topic ;
skos:prefLabel "phrase extraction"@en ;
skos:broader derw:topic_Natural_Language ;
skos:closeMatch wd:Q66709886 ;
skos:definition "Selecting representative phrases from a document as its characteristic entities; in contrast to *keyword* analysis."@en
.
derw:topic_Reinforcement_Learning a derw:Topic ;
skos:prefLabel "reinforcement learning"@en ;
skos:altLabel "RL"@en ;
skos:closeMatch wd:Q830687 ,
lcsh:sh92000704 ,
<https://docs.ray.io/en/master/rllib-models.html> ;
skos:broader <https://derwen.ai/d/machine_learning> ;
skos:definition "Optimal control theory mixed with deep learning where software agents learn to take actions within an environment and make sequences of decisions to maximize a cumulative reward -- typically stated in terms of markov decision process -- finding a balance between exploration (uncharted territory) and exploitation (current knowledge). Generally a reverse engineering of various psychological learning processes."@en
.
derw:topic_Semantic_Relations
a derw:Topic ;
skos:prefLabel "semantic relations"@en ;
skos:closeMatch wd:Q2268906 ;
skos:broader derw:topic_Knowledge_Graph ;
skos:definition "Associations that exist between the meanings of phrases."@en
.
derw:topic_Stop_Words
a derw:Topic ;
skos:prefLabel "stop words"@en ;
skos:broader derw:topic_Natural_Language ;
skos:closeMatch wd:Q80735 ,
lcsh:sh85046249 ;
skos:definition "Words to be filtered out during natural language processing."@en
.
derw:topic_Summarization
a derw:Topic ;
skos:prefLabel "summarization"@en ;
skos:altLabel "text summarization"@en ;
skos:closeMatch wd:Q1394144 ,
<http://nlpprogress.com/english/summarization.html> ;
skos:broader derw:topic_Natural_Language ;
skos:definition "Producing a shorter version of one or more documents, while preserving most of the input's meaning."@en
.
derw:topic_Textgraphs
a derw:Topic ;
skos:prefLabel "textgraphs"@en ;
skos:closeMatch wd:Q18388823 ,
<http://www.gabormelli.com/RKB/Text_Graph> ,
<http://www.textgraphs.org/> ;
skos:broader derw:topic_Natural_Language ,
derw:topic_Graph_Algorithms ;
skos:definition "Use of graph algorithms for NLP, based on a graph representation of a source text."@en
.
derw:topic_Transformers
a derw:Topic ;
skos:prefLabel "transformers"@en ;
skos:broader derw:topic_Language_Model ,
derw:topic_Deep_Learning ;
skos:closeMatch wd:Q85810444 ,
<https://paperswithcode.com/methods/category/transformers> ;
skos:definition "A family of deep learning models, mostly used in NLP, which adopts the mechanism of *attention* to weigh the influence of different parts of the input data."@en
.