{"entities":{"Q1064500":{"pageid":1013144,"ns":0,"title":"Q1064500","lastrevid":2063949554,"modified":"2024-01-28T14:21:20Z","type":"item","id":"Q1064500","labels":{"pt":{"language":"pt","value":"topologia simpl\u00e9tica"},"zh-hans":{"language":"zh-hans","value":"\u8f9b\u6d41\u5f62"},"zh-hant":{"language":"zh-hant","value":"\u8f9b\u6d41\u5f62"},"zh-hk":{"language":"zh-hk","value":"\u8f9b\u6d41\u5f62"},"ru":{"language":"ru","value":"\u0441\u0438\u043c\u043f\u043b\u0435\u043a\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u043c\u043d\u043e\u0433\u043e\u043e\u0431\u0440\u0430\u0437\u0438\u0435"},"fr":{"language":"fr","value":"vari\u00e9t\u00e9 symplectique"},"ko":{"language":"ko","value":"\uc2ec\ud50c\ub809\ud2f1 \ub2e4\uc591\uccb4"},"es":{"language":"es","value":"variedad simpl\u00e9ctica"},"en":{"language":"en","value":"symplectic manifold"},"ro":{"language":"ro","value":"mul\u021bime simplectic\u0103"},"ca":{"language":"ca","value":"varietat simpl\u00e8ctica"},"it":{"language":"it","value":"variet\u00e0 simplettica"},"de":{"language":"de","value":"symplektische Mannigfaltigkeit"},"ja":{"language":"ja","value":"\u30b7\u30f3\u30d7\u30ec\u30af\u30c6\u30a3\u30c3\u30af\u591a\u69d8\u4f53"},"cs":{"language":"cs","value":"symplektick\u00e1 varieta"},"sq":{"language":"sq","value":"manifoldi simplektik"},"da":{"language":"da","value":"symplektisk mangfoldighed"},"nl":{"language":"nl","value":"symplectische vari\u00ebteit"},"zh":{"language":"zh","value":"\u8f9b\u6d41\u5f62"},"eo":{"language":"eo","value":"simplekta sterna\u0135o"},"uk":{"language":"uk","value":"\u0441\u0438\u043c\u043f\u043b\u0435\u043a\u0442\u0438\u0447\u043d\u0438\u0439 \u043c\u043d\u043e\u0433\u043e\u0432\u0438\u0434"},"nn":{"language":"nn","value":"symplektisk mangfald"},"sl":{"language":"sl","value":"simplekti\u010dna mnogoterost"}},"descriptions":{"en":{"language":"en","value":"in differential geometry, a smooth manifold equipped with a closed, nondegenerate differential 2-form"},"eo":{"language":"eo","value":"glata sterna\u0135o kune kun fermita, nedegenera diferenciala 2-formo"},"fr":{"language":"fr","value":"vari\u00e9t\u00e9 diff\u00e9rentielle munie d'une forme diff\u00e9rentielle de degr\u00e9 2 ferm\u00e9e et non d\u00e9g\u00e9n\u00e9r\u00e9e"},"ja":{"language":"ja","value":"\u30b7\u30f3\u30d7\u30ec\u30af\u30c6\u30a3\u30c3\u30af\u5f62\u5f0f\u3068\u547c\u3070\u308c\u308b\u975e\u9000\u5316\u306a\u9589\u5f62\u5f0f\u3067\u3042\u308b 2-\u5f62\u5f0f\u3092\u6301\u3064\u6ed1\u3089\u304b\u306a\u591a\u69d8\u4f53"},"de":{"language":"de","value":"Objekte der Differentialgeometrie"},"nl":{"language":"nl","value":"type vari\u00ebteit in differenti\u00eble geometrie"},"sl":{"language":"sl","value":"v diferencialni geometriji gladka mno\u017eica z zaprto, nedegenerirano diferencialno 2-formo"}},"aliases":{"pt":[{"language":"pt","value":"variedade simpl\u00e9tica"}],"ru":[{"language":"ru","value":"\u0441\u0438\u043c\u043f\u043b\u0435\u043a\u0442\u0438\u0447\u0435\u0441\u043a\u0430\u044f \u0444\u043e\u0440\u043c\u0430"}],"ko":[{"language":"ko","value":"\uc2ec\ud50c\ub809\ud2f1 \ud615\uc2dd"}],"es":[{"language":"es","value":"topologia simpl\u00e9ctica"}],"ro":[{"language":"ro","value":"mul\u0163ime simplectic\u0103"}],"ca":[{"language":"ca","value":"forma simpl\u00e8ctica"},{"language":"ca","value":"varietat simpl\u00e9ctica"}],"de":[{"language":"de","value":"symplektische Struktur"},{"language":"de","value":"symplektische Topologie"}],"sq":[{"language":"sq","value":"manifold simplektik"}],"da":[{"language":"da","value":"symplektisk struktur"}],"nl":[{"language":"nl","value":"symplectische varieteit"}],"zh":[{"language":"zh","value":"\u62c9\u683c\u6717\u65e5\u5b50\u6d41\u5f62"}]},"claims":{"P646":[{"mainsnak":{"snaktype":"value","property":"P646","hash":"37802e91ea32bb0176c91d01828489c3793bab3a","datavalue":{"value":"/m/070pf","type":"string"},"datatype":"external-id"},"type":"statement","id":"Q1064500$B1B5C6DA-B671-44F8-A8C5-0C2EC7FBAC49","rank":"normal","references":[{"hash":"2b00cb481cddcac7623114367489b5c194901c4a","snaks":{"P248":[{"snaktype":"value","property":"P248","hash":"a94b740202b097dd33355e0e6c00e54b9395e5e0","datavalue":{"value":{"entity-type":"item","numeric-id":15241312,"id":"Q15241312"},"type":"wikibase-entityid"},"datatype":"wikibase-item"}],"P577":[{"snaktype":"value","property":"P577","hash":"fde79ecb015112d2f29229ccc1ec514ed3e71fa2","datavalue":{"value":{"time":"+2013-10-28T00:00:00Z","timezone":0,"before":0,"after":0,"precision":11,"calendarmodel":"http://www.wikidata.org/entity/Q1985727"},"type":"time"},"datatype":"time"}]},"snaks-order":["P248","P577"]}]}],"P2534":[{"mainsnak":{"snaktype":"value","property":"P2534","hash":"20e93eb145812e8b2575925369dff54ee5b405b5","datavalue":{"value":"(M,\\omega)\\qquad(\\omega\\in\\Omega^2(M),\\;\\mathrm d\\omega=0,\\;\\forall (x,v)\\in\\mathrm TM\\setminus M\\colon\\omega_x(v,-)\\ne0)","type":"string"},"datatype":"math"},"type":"statement","id":"Q1064500$D7188AE3-DBA1-4B5B-82A0-F32906DD2C10","rank":"normal"}],"P279":[{"mainsnak":{"snaktype":"value","property":"P279","hash":"3e84008c3c6bb8965648a0c1ec4bffa44c0fb5e5","datavalue":{"value":{"entity-type":"item","numeric-id":1464936,"id":"Q1464936"},"type":"wikibase-entityid"},"datatype":"wikibase-item"},"type":"statement","id":"Q1064500$886cc490-41a4-35a1-cfcd-79ececde6b27","rank":"normal"},{"mainsnak":{"snaktype":"value","property":"P279","hash":"0f82257a75da4b23672fc98f7360d9b6fc019795","datavalue":{"value":{"entity-type":"item","numeric-id":62036812,"id":"Q62036812"},"type":"wikibase-entityid"},"datatype":"wikibase-item"},"type":"statement","id":"Q1064500$83fbf689-4efd-1456-e53c-c8fd90c6efc6","rank":"normal"}],"P6366":[{"mainsnak":{"snaktype":"value","property":"P6366","hash":"2dba6206c5febe514575ce88197872492164fd96","datavalue":{"value":"130190758","type":"string"},"datatype":"external-id"},"type":"statement","id":"Q1064500$81EF5149-3D56-4A7F-BD85-979B7ACFE252","rank":"normal"}],"P4215":[{"mainsnak":{"snaktype":"value","property":"P4215","hash":"76fda8a15a8e59d71f2f748f3af806ffc5bb6212","datavalue":{"value":"symplectic manifold","type":"string"},"datatype":"external-id"},"type":"statement","id":"Q1064500$9CB58B17-607D-45AB-B04B-3007857E51C0","rank":"normal"}],"P10283":[{"mainsnak":{"snaktype":"value","property":"P10283","hash":"6bbae61f269b9b7bb5a8531c6d40aad4477f7c66","datavalue":{"value":"C130190758","type":"string"},"datatype":"external-id"},"type":"statement","id":"Q1064500$4AB4C2B4-036D-4A8A-8DB1-16177FC59A84","rank":"normal","references":[{"hash":"e0b27d817c9a9b3247df341000fc490bafcba862","snaks":{"P248":[{"snaktype":"value","property":"P248","hash":"4a4f26a5361b5707266e48e425bf2be2f99fd2ab","datavalue":{"value":{"entity-type":"item","numeric-id":107507571,"id":"Q107507571"},"type":"wikibase-entityid"},"datatype":"wikibase-item"}],"P813":[{"snaktype":"value","property":"P813","hash":"435834d08182bb9f3dbe974ba9840af0f12899cc","datavalue":{"value":{"time":"+2022-01-26T00:00:00Z","timezone":0,"before":0,"after":0,"precision":11,"calendarmodel":"http://www.wikidata.org/entity/Q1985727"},"type":"time"},"datatype":"time"}],"P854":[{"snaktype":"value","property":"P854","hash":"a4a4bf53f22268815c51ec10fed608da703c9c7f","datavalue":{"value":"https://docs.openalex.org/download-snapshot/snapshot-data-format","type":"string"},"datatype":"url"}],"P1065":[{"snaktype":"value","property":"P1065","hash":"3134281f51e2490f88272d53c56ee95d9cc24e2c","datavalue":{"value":"https://web.archive.org/web/20220125070108/https://docs.openalex.org/download-snapshot/snapshot-data-format","type":"string"},"datatype":"url"}],"P2960":[{"snaktype":"value","property":"P2960","hash":"f7ff3a0de7f9571ecb5e0740cba4122c6703e1ec","datavalue":{"value":{"time":"+2022-01-25T00:00:00Z","timezone":0,"before":0,"after":0,"precision":11,"calendarmodel":"http://www.wikidata.org/entity/Q1985727"},"type":"time"},"datatype":"time"}]},"snaks-order":["P248","P813","P854","P1065","P2960"]}]}],"P10376":[{"mainsnak":{"snaktype":"value","property":"P10376","hash":"877e11e9053e5b80a9463902bc0c30d005e9bad2","datavalue":{"value":"mathematics/symplectic-manifold","type":"string"},"datatype":"external-id"},"type":"statement","id":"Q1064500$dd711145-4428-6914-0d91-aafb9ad07ae4","rank":"normal"}],"P7235":[{"mainsnak":{"snaktype":"value","property":"P7235","hash":"f70a73fe568d65bf5e501da76a9f9bc277a07f1f","datavalue":{"value":"\\omega","type":"string"},"datatype":"math"},"type":"statement","qualifiers":{"P9758":[{"snaktype":"value","property":"P9758","hash":"02cb981924e144c916da684b6ba56c78f0af05da","datavalue":{"value":{"entity-type":"item","numeric-id":3077487,"id":"Q3077487"},"type":"wikibase-entityid"},"datatype":"wikibase-item"}]},"qualifiers-order":["P9758"],"id":"Q1064500$7740e0f1-47dc-cdaa-dea7-dec008655c1b","rank":"normal"},{"mainsnak":{"snaktype":"value","property":"P7235","hash":"25b19bab784ce298d03447b7da9e9207359fe1cd","datavalue":{"value":"\\mathrm d","type":"string"},"datatype":"math"},"type":"statement","qualifiers":{"P9758":[{"snaktype":"value","property":"P9758","hash":"aa0c4a5a95dcc58dd39842466df30ec3a0144bf5","datavalue":{"value":{"entity-type":"item","numeric-id":1754547,"id":"Q1754547"},"type":"wikibase-entityid"},"datatype":"wikibase-item"}]},"qualifiers-order":["P9758"],"id":"Q1064500$23dd0b59-48a2-a0bc-2405-0e467926781b","rank":"normal"},{"mainsnak":{"snaktype":"value","property":"P7235","hash":"fdfdcebdd1e0696ddac5b632f600f7186b673c91","datavalue":{"value":"M","type":"string"},"datatype":"math"},"type":"statement","qualifiers":{"P9758":[{"snaktype":"value","property":"P9758","hash":"49e0186bdd750944cd0f51b8d4272f7f6e0e0820","datavalue":{"value":{"entity-type":"item","numeric-id":78338964,"id":"Q78338964"},"type":"wikibase-entityid"},"datatype":"wikibase-item"}]},"qualifiers-order":["P9758"],"id":"Q1064500$e4b8797d-4a31-852b-b084-2ebd3cfcd124","rank":"normal"}],"P7554":[{"mainsnak":{"snaktype":"value","property":"P7554","hash":"8e0203679cf9e4e80cc538af51a14ca0c37083fe","datavalue":{"value":"Symplectic_manifold","type":"string"},"datatype":"external-id"},"type":"statement","id":"Q1064500$29c95c9c-483a-6a80-9f07-23faf2e9ef84","rank":"normal"}],"P7726":[{"mainsnak":{"snaktype":"value","property":"P7726","hash":"0bbe04547d726a14573a6b801078f3c03d8c6841","datavalue":{"value":"SymplecticManifold","type":"string"},"datatype":"external-id"},"type":"statement","id":"Q1064500$97612267-458e-15e5-3e0f-04f558d4af4f","rank":"normal"}],"P2812":[{"mainsnak":{"snaktype":"value","property":"P2812","hash":"c83c5b481ce724ce641d58153c77a23a6dce28d8","datavalue":{"value":"SymplecticManifold","type":"string"},"datatype":"external-id"},"type":"statement","id":"Q1064500$9abddd3e-4e69-3249-b090-efb9fff8eec8","rank":"normal"}],"P227":[{"mainsnak":{"snaktype":"value","property":"P227","hash":"22046e46f5abe30c46d40df8653928970617fc78","datavalue":{"value":"4290704-4","type":"string"},"datatype":"external-id"},"type":"statement","id":"Q1064500$ffdfd2b8-4ef3-f87a-b735-f469ed0c8a27","rank":"normal"}],"P11514":[{"mainsnak":{"snaktype":"value","property":"P11514","hash":"dd19dc2b27feeff50682204017a22c0ed9704904","datavalue":{"value":"simplekticheskoe-mnogoobrazie-aa2e39","type":"string"},"datatype":"external-id"},"type":"statement","id":"Q1064500$FE9CA491-131F-44FC-B8E2-552BAFC64AEA","rank":"normal"}],"P10565":[{"mainsnak":{"snaktype":"value","property":"P10565","hash":"f98a5a77fe83e3b7b7e54718bac2f1aa5a9f473a","datavalue":{"value":"318411","type":"string"},"datatype":"external-id"},"type":"statement","id":"Q1064500$546BE1A0-5032-4C3D-AF39-900B9CF53C34","rank":"normal"}],"P6104":[{"mainsnak":{"snaktype":"value","property":"P6104","hash":"a27c5fdb35b42381f12b2a603711e56d98dd77fd","datavalue":{"value":{"entity-type":"item","numeric-id":8487137,"id":"Q8487137"},"type":"wikibase-entityid"},"datatype":"wikibase-item"},"type":"statement","id":"Q1064500$24950084-FC28-4DAB-9924-983E7F9F0B84","rank":"normal"}],"P10037":[{"mainsnak":{"snaktype":"value","property":"P10037","hash":"8edaa5ef65df41e5dfc227223009a6d119fa8994","datavalue":{"value":"varieta-simplettiche","type":"string"},"datatype":"external-id"},"type":"statement","qualifiers":{"P1810":[{"snaktype":"value","property":"P1810","hash":"1f0d0bea3fa15388aced142e2c7165522900dc98","datavalue":{"value":"varieta simplettiche","type":"string"},"datatype":"string"}],"P2093":[{"snaktype":"value","property":"P2093","hash":"01a3e62a00cb15a67caada7f8503fe51af86d72f","datavalue":{"value":"Luca Tomassini","type":"string"},"datatype":"string"}],"P577":[{"snaktype":"value","property":"P577","hash":"69218402add8938075ebc08e1fb1c31d44f661dd","datavalue":{"value":{"time":"+2008-01-01T00:00:00Z","timezone":0,"before":0,"after":0,"precision":9,"calendarmodel":"http://www.wikidata.org/entity/Q1985727"},"type":"time"},"datatype":"time"}]},"qualifiers-order":["P1810","P2093","P577"],"id":"Q1064500$cc3a2467-4bab-ed24-3cf3-8a33a42a275a","rank":"normal"}]},"sitelinks":{"cawiki":{"site":"cawiki","title":"Varietat simpl\u00e8ctica","badges":[],"url":"https://ca.wikipedia.org/wiki/Varietat_simpl%C3%A8ctica"},"cswiki":{"site":"cswiki","title":"Symplektick\u00e1 varieta","badges":[],"url":"https://cs.wikipedia.org/wiki/Symplektick%C3%A1_varieta"},"dawiki":{"site":"dawiki","title":"Symplektisk mangfoldighed","badges":[],"url":"https://da.wikipedia.org/wiki/Symplektisk_mangfoldighed"},"dewiki":{"site":"dewiki","title":"Symplektische Mannigfaltigkeit","badges":[],"url":"https://de.wikipedia.org/wiki/Symplektische_Mannigfaltigkeit"},"enwiki":{"site":"enwiki","title":"Symplectic manifold","badges":[],"url":"https://en.wikipedia.org/wiki/Symplectic_manifold"},"frwiki":{"site":"frwiki","title":"Vari\u00e9t\u00e9 symplectique","badges":[],"url":"https://fr.wikipedia.org/wiki/Vari%C3%A9t%C3%A9_symplectique"},"frwikiversity":{"site":"frwikiversity","title":"G\u00e9om\u00e9trie symplectique/Vari\u00e9t\u00e9 symplectique","badges":[],"url":"https://fr.wikiversity.org/wiki/G%C3%A9om%C3%A9trie_symplectique/Vari%C3%A9t%C3%A9_symplectique"},"itwiki":{"site":"itwiki","title":"Variet\u00e0 simplettica","badges":[],"url":"https://it.wikipedia.org/wiki/Variet%C3%A0_simplettica"},"jawiki":{"site":"jawiki","title":"\u30b7\u30f3\u30d7\u30ec\u30af\u30c6\u30a3\u30c3\u30af\u591a\u69d8\u4f53","badges":[],"url":"https://ja.wikipedia.org/wiki/%E3%82%B7%E3%83%B3%E3%83%97%E3%83%AC%E3%82%AF%E3%83%86%E3%82%A3%E3%83%83%E3%82%AF%E5%A4%9A%E6%A7%98%E4%BD%93"},"kowiki":{"site":"kowiki","title":"\uc2ec\ud50c\ub809\ud2f1 \ub2e4\uc591\uccb4","badges":[],"url":"https://ko.wikipedia.org/wiki/%EC%8B%AC%ED%94%8C%EB%A0%89%ED%8B%B1_%EB%8B%A4%EC%96%91%EC%B2%B4"},"nlwiki":{"site":"nlwiki","title":"Symplectische vari\u00ebteit","badges":[],"url":"https://nl.wikipedia.org/wiki/Symplectische_vari%C3%ABteit"},"rowiki":{"site":"rowiki","title":"Mul\u021bime simplectic\u0103","badges":[],"url":"https://ro.wikipedia.org/wiki/Mul%C8%9Bime_simplectic%C4%83"},"ruwiki":{"site":"ruwiki","title":"\u0421\u0438\u043c\u043f\u043b\u0435\u043a\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u043c\u043d\u043e\u0433\u043e\u043e\u0431\u0440\u0430\u0437\u0438\u0435","badges":[],"url":"https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%B8%D0%B5"},"sqwiki":{"site":"sqwiki","title":"Manifoldi simplektik","badges":[],"url":"https://sq.wikipedia.org/wiki/Manifoldi_simplektik"},"ukwiki":{"site":"ukwiki","title":"\u0421\u0438\u043c\u043f\u043b\u0435\u043a\u0442\u0438\u0447\u043d\u0438\u0439 \u043c\u043d\u043e\u0433\u043e\u0432\u0438\u0434","badges":[],"url":"https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%82%D0%B8%D1%87%D0%BD%D0%B8%D0%B9_%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D0%B2%D0%B8%D0%B4"},"zhwiki":{"site":"zhwiki","title":"\u8f9b\u6d41\u5f62","badges":[],"url":"https://zh.wikipedia.org/wiki/%E8%BE%9B%E6%B5%81%E5%BD%A2"}}}}}