SlideShare a Scribd company logo
Norikra in Action
TAGOMORI Satoshi (@tagomoris)
LINE Corp.
2014/01/31 (Fri) at University of Tsukuba
the 2nd half

14年1月31日金曜日
Norikra:
Schema-less Stream Processing with SQL
Open source software (GPLv2)
http://norikra.github.io/
https://github.com/norikra/norikra

14年1月31日金曜日
Norikra:
Schema-less event stream:
Add/Remove data fields whenever you want
SQL:
No more restarts to add/remove queries
w/ JOINs, w/ SubQueries
w/ UDF
Truly Complex events:
Nested Hash/Array, accessible directly from SQL

14年1月31日金曜日
Norikra Queries: (1)

SELECT name, age
FROM events

target

14年1月31日金曜日
Norikra Queries: (1)
{“name”:”tagomoris”,
“age”:34, “address”:”Tokyo”,
“corp”:”LINE”, “current”:”Tsukuba”}

SELECT name, age
FROM events

{“name”:”tagomoris”,”age”:34}
14年1月31日金曜日
Norikra Queries: (1)
{“name”:”tagomoris”,
“address”:”Tokyo”,
“corp”:”LINE”, “current”:”Tsukuba”}

SELECT name, age
FROM events

nothing
14年1月31日金曜日
Norikra Queries: (2)
{“name”:”tagomoris”,
“age”:34, “address”:”Tokyo”,
“corp”:”LINE”, “current”:”Tsukuba”}

SELECT name, age
FROM events
WHERE current=”Tsukuba”

{“name”:”tagomoris”,”age”:34}
14年1月31日金曜日
Norikra Queries: (2)
{“name”:”kawashima”,
“age”:99, “address”:”Tsukuba”,
“corp”:”Univ”, “current”:”Dream”}

SELECT name, age
FROM events
WHERE current=”Tsukuba”

nothing
14年1月31日金曜日
Norikra Queries: (3)

SELECT age, COUNT(*) as cnt
FROM events.win:time_batch(5 mins)
GROUP BY age

14年1月31日金曜日
Norikra Queries: (3)
{“name”:”tagomoris”,
“age”:34, “address”:”Tokyo”,
“corp”:”LINE”, “current”:”Tsukuba”}

SELECT age, COUNT(*) as cnt
FROM events.win:time_batch(5 mins)
GROUP BY age
every 5 mins
{”age”:34,”cnt”:3}, {“age”:33,”cnt”:1}, ...
14年1月31日金曜日
Norikra Queries: (4)
{“name”:”tagomoris”,
“age”:34, “address”:”Tokyo”,
“corp”:”LINE”, “current”:”Tsukuba”}

SELECT age, COUNT(*) as cnt
FROM
events.win:time_batch(5 mins)
GROUP BY age

SELECT max(age) as max
FROM
events.win:time_batch(5 mins)

{”age”:34,”cnt”:3}, {“age”:33,”cnt”:1}, ...
{“max”:51}
14年1月31日金曜日

every 5 mins
Norikra Queries: (5)
{“name”:”tagomoris”,
“user:{“age”:34, “corp”:”LINE”,
“address”:”Tokyo”},
“current”:”Tsukuba”,
“speaker”:true,
“attend”:[true,true,false, ...]
}

SELECT age, COUNT(*) as cnt
FROM events.win:time_batch(5 mins)
GROUP BY age
14年1月31日金曜日
Norikra Queries: (5)
{“name”:”tagomoris”,
“user:{“age”:34, “corp”:”LINE”,
“address”:”Tokyo”},
“current”:”Tsukuba”,
“speaker”:true,
“attend”:[true,true,false, ...]
}

SELECT user.age, COUNT(*) as cnt
FROM events.win:time_batch(5 mins)
GROUP BY user.age
14年1月31日金曜日
Norikra Queries: (5)
{“name”:”tagomoris”,
“user:{“age”:34, “corp”:”LINE”,
“address”:”Tokyo”},
“current”:”Kyoto”,
“speaker”:true,
“attend”:[true,true,false, ...]
}

SELECT user.age, COUNT(*) as cnt
FROM events.win:time_batch(5 mins)
WHERE current=”Tsukuba”
AND attend.$0 AND attend.$1
GROUP BY user.age
14年1月31日金曜日
Norikra and Esper
Esper:
CEP engine library, Java, GPLv2
EPL: Event Processing Language (SQL + window)
Streams: schema-full flat field set
Norikra:
Using Esper internally
Schema-less stream -> schema-full stream
conversion
Rewriting compiled queries

14年1月31日金曜日
Norikra query execution
1.accept query
2.parse -> find target / field set
3.(if target is not opened) wait for first event
4.compile query
5.rewrite target name into stream name
6.rewrite field names
7.register query
8.input events
14年1月31日金曜日
Target mapping

Ignore unused fields
Field set matching between streams and queries
Generate field set inheritance tree

14年1月31日金曜日
automated stream inheritance
of norikra's target
Base fieldset

Query fieldset

Data fieldset

14年1月31日金曜日

b_xxxxxxxxx

minimal fieldset definition:
name: 'string'
id: 'long'
valid: 'boolean'
action_type: 'string'
automated stream inheritance
of norikra's target
Base fieldset

b_xxxxxxxxx

Query fieldset

Data fieldset

14年1月31日金曜日

e_xxxxxxxx1

event data fieldset definition:
name: 'string'
id: 'long'
valid: 'boolean'
action_type: 'string'
product_code: 'string'
charge: 'integer'
shop_code: 'long'
automated stream inheritance
of norikra's target
Base fieldset
event data fieldset definition:
name: 'string'
id: 'long'
valid: 'boolean'
action_type: 'string'
product_code: 'string'
Query fieldset
charge: 'integer'
shop_code: 'long'
affiliate: 'string'
Data fieldset

14年1月31日金曜日

e_xxxxxxxx1

b_xxxxxxxxx

e_xxxxxxxx2
automated stream inheritance
of norikra's target
Base fieldset

b_xxxxxxxxx
new query:
SELECT count(*)
FROM target.win:time_batch(1min)
WHERE affiliate.length() > 0

Query fieldset

Data fieldset

14年1月31日金曜日

e_xxxxxxxx1

e_xxxxxxxx2
new query:
SELECT count(*)
FROM target.win:time_batch(1min)
WHERE affiliate.length() > 0

automated stream inheritance
of norikra's target
Base fieldset

b_xxxxxxxxx

Query fieldset

Data fieldset

14年1月31日金曜日

event data fieldset definition:
name: 'string'
id: 'long'
valid: 'boolean'
action_type: 'string'
affiliate: 'string'

q_xxxxxxxx0

e_xxxxxxxx1

e_xxxxxxxx2'
Registered
automated stream inheritance EPL:
SELECT count(*)
of norikra's targetFROM q_xxxxxxxx0.win:time_batch(1min)
WHERE affiliate.length() > 0

Base fieldset

b_xxxxxxxxx

Query fieldset

Data fieldset

14年1月31日金曜日

q_xxxxxxxx0

e_xxxxxxxx1

e_xxxxxxxx2'
automated stream inheritance
of norikra's target
Base fieldset

b_xxxxxxxxx

Query fieldset

q_xxxxxxxx0

q_xxxxxxxx1

Data fieldset e_xxxxxxxx1'

e_xxxxxxxx2'

e_xxxxxxxx3'

14年1月31日金曜日
Query rewriting
{“name”:”tagomoris”,
“user:{“age”:34, “corp”:”LINE”,
“address”:”Tokyo”},
“current”:”Kyoto”,
“speaker”:true,
“attend”:[true,true,false, ...]
}

SELECT user.age, COUNT(*) as cnt
FROM events.win:time_batch(5 mins)
WHERE current=”Tsukuba”
AND attend.$0 AND attend.$1
GROUP BY user.age
14年1月31日金曜日
{“name”:”tagomoris”,
“user:{“age”:34, “corp”:”LINE”,
“address”:”Tokyo”},
“current”:”Kyoto”,
“speaker”:true,
“attend”:[true,true,false, ...]
}

SELECT user.age, COUNT(*) as cnt
FROM events.win:time_batch(5 mins)
WHERE current=”Tsukuba”
AND attend.$0 AND attend.$1
GROUP BY user.age
14年1月31日金曜日
{“name”:”tagomoris”,
“user:{“age”:34, “corp”:”LINE”,
“address”:”Tokyo”},
“current”:”Kyoto”,
“speaker”:true,
“attend”:[true,true,false, ...]
}
{“name”:”tagomoris”,
“user.age”:34,
“user.corp”:”LINE”,
“user.address”:”Tokyo”,
“current”:”Kyoto”,
“speaker”:true,
“attend.$0”:true,
“attend.$1”:true,
“attend.$2”:false,
...
}
14年1月31日金曜日
{“name”:”tagomoris”,
“user.age”:34,
“user.corp”:”LINE”,
“user.address”:”Tokyo”,
“current”:”Kyoto”,
“speaker”:true,
“attend.$0”:true,
“attend.$1”:true,
“attend.$2”:false,
...
}

{“user$age”:34,
“current”:”Kyoto”,
“attend$$0”:true,
“attend$$1”:true,
}
14年1月31日金曜日
{“user$age”:34,
“current”:”Kyoto”,
“attend$$0”:true,
“attend$$1”:true,
}

SELECT user.age, COUNT(*) as cnt
FROM events.win:time_batch(5 mins)
WHERE current=”Tsukuba”
AND attend.$0 AND attend.$1
GROUP BY user.age

14年1月31日金曜日
{“user$age”:34,
“current”:”Kyoto”,
“attend$$0”:true,
“attend$$1”:true,
}
SELECT

user.age, COUNT(*) as cnt
FROM events.win:time_batch(5 mins)
WHERE current=”Tsukuba”
AND attend.$0 AND attend.$1
GROUP BY user.age

Conversions for compiled query object in fact.

SELECT user$age, COUNT(*) as cnt
FROM events.win:time_batch(5 mins)
WHERE current=”Tsukuba”
AND attend$$0 AND attend$$1
GROUP BY user$age
14年1月31日金曜日
Norikra internal:
Jump
from schema-full world
to schema-less world.

14年1月31日金曜日

More Related Content

What's hot (20)

Apache Flink Training: DataSet API Basics
Apache Flink Training: DataSet API BasicsApache Flink Training: DataSet API Basics
Apache Flink Training: DataSet API Basics
Flink Forward
 
Scala+data
Scala+dataScala+data
Scala+data
Samir Bessalah
 
The Power of Both Choices: Practical Load Balancing for Distributed Stream Pr...
The Power of Both Choices: Practical Load Balancing for Distributed Stream Pr...The Power of Both Choices: Practical Load Balancing for Distributed Stream Pr...
The Power of Both Choices: Practical Load Balancing for Distributed Stream Pr...
Anis Nasir
 
Using QString effectively
Using QString effectivelyUsing QString effectively
Using QString effectively
Roman Okolovich
 
k-means Clustering in Python
k-means Clustering in Pythonk-means Clustering in Python
k-means Clustering in Python
Dr. Volkan OBAN
 
Андрей Козлов (Altoros): Оптимизация производительности Cassandra
Андрей Козлов (Altoros): Оптимизация производительности CassandraАндрей Козлов (Altoros): Оптимизация производительности Cassandra
Андрей Козлов (Altoros): Оптимизация производительности Cassandra
Olga Lavrentieva
 
Start Wrap Episode 11: A New Rope
Start Wrap Episode 11: A New RopeStart Wrap Episode 11: A New Rope
Start Wrap Episode 11: A New Rope
Yung-Yu Chen
 
FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in...
FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in...FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in...
FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in...
Rob Skillington
 
Michael Häusler – Everyday flink
Michael Häusler – Everyday flinkMichael Häusler – Everyday flink
Michael Häusler – Everyday flink
Flink Forward
 
Podlove Podcast Validator
Podlove Podcast ValidatorPodlove Podcast Validator
Podlove Podcast Validator
Lars Windauer
 
FOSDEM 2020: Querying over millions and billions of metrics with M3DB's index
FOSDEM 2020: Querying over millions and billions of metrics with M3DB's indexFOSDEM 2020: Querying over millions and billions of metrics with M3DB's index
FOSDEM 2020: Querying over millions and billions of metrics with M3DB's index
Rob Skillington
 
NoSQL @ CodeMash 2010
NoSQL @ CodeMash 2010NoSQL @ CodeMash 2010
NoSQL @ CodeMash 2010
Ben Scofield
 
Distributed Realtime Computation using Apache Storm
Distributed Realtime Computation using Apache StormDistributed Realtime Computation using Apache Storm
Distributed Realtime Computation using Apache Storm
the100rabh
 
Scaling Apache Storm (Hadoop Summit 2015)
Scaling Apache Storm (Hadoop Summit 2015)Scaling Apache Storm (Hadoop Summit 2015)
Scaling Apache Storm (Hadoop Summit 2015)
Robert Evans
 
JVM performance options. How it works
JVM performance options. How it worksJVM performance options. How it works
JVM performance options. How it works
Dmitriy Dumanskiy
 
Stream analysis with kafka native way and considerations about monitoring as ...
Stream analysis with kafka native way and considerations about monitoring as ...Stream analysis with kafka native way and considerations about monitoring as ...
Stream analysis with kafka native way and considerations about monitoring as ...
Andrew Yongjoon Kong
 
Multi-Tenant Storm Service on Hadoop Grid
Multi-Tenant Storm Service on Hadoop GridMulti-Tenant Storm Service on Hadoop Grid
Multi-Tenant Storm Service on Hadoop Grid
DataWorks Summit
 
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDBBuilding a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Cody Ray
 
Nodejs性能分析优化和分布式设计探讨
Nodejs性能分析优化和分布式设计探讨Nodejs性能分析优化和分布式设计探讨
Nodejs性能分析优化和分布式设计探讨
flyinweb
 
Internet of Things Data Science
Internet of Things Data ScienceInternet of Things Data Science
Internet of Things Data Science
Albert Bifet
 
Apache Flink Training: DataSet API Basics
Apache Flink Training: DataSet API BasicsApache Flink Training: DataSet API Basics
Apache Flink Training: DataSet API Basics
Flink Forward
 
The Power of Both Choices: Practical Load Balancing for Distributed Stream Pr...
The Power of Both Choices: Practical Load Balancing for Distributed Stream Pr...The Power of Both Choices: Practical Load Balancing for Distributed Stream Pr...
The Power of Both Choices: Practical Load Balancing for Distributed Stream Pr...
Anis Nasir
 
Using QString effectively
Using QString effectivelyUsing QString effectively
Using QString effectively
Roman Okolovich
 
k-means Clustering in Python
k-means Clustering in Pythonk-means Clustering in Python
k-means Clustering in Python
Dr. Volkan OBAN
 
Андрей Козлов (Altoros): Оптимизация производительности Cassandra
Андрей Козлов (Altoros): Оптимизация производительности CassandraАндрей Козлов (Altoros): Оптимизация производительности Cassandra
Андрей Козлов (Altoros): Оптимизация производительности Cassandra
Olga Lavrentieva
 
Start Wrap Episode 11: A New Rope
Start Wrap Episode 11: A New RopeStart Wrap Episode 11: A New Rope
Start Wrap Episode 11: A New Rope
Yung-Yu Chen
 
FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in...
FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in...FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in...
FOSDEM 2019: M3, Prometheus and Graphite with metrics and monitoring in an in...
Rob Skillington
 
Michael Häusler – Everyday flink
Michael Häusler – Everyday flinkMichael Häusler – Everyday flink
Michael Häusler – Everyday flink
Flink Forward
 
Podlove Podcast Validator
Podlove Podcast ValidatorPodlove Podcast Validator
Podlove Podcast Validator
Lars Windauer
 
FOSDEM 2020: Querying over millions and billions of metrics with M3DB's index
FOSDEM 2020: Querying over millions and billions of metrics with M3DB's indexFOSDEM 2020: Querying over millions and billions of metrics with M3DB's index
FOSDEM 2020: Querying over millions and billions of metrics with M3DB's index
Rob Skillington
 
NoSQL @ CodeMash 2010
NoSQL @ CodeMash 2010NoSQL @ CodeMash 2010
NoSQL @ CodeMash 2010
Ben Scofield
 
Distributed Realtime Computation using Apache Storm
Distributed Realtime Computation using Apache StormDistributed Realtime Computation using Apache Storm
Distributed Realtime Computation using Apache Storm
the100rabh
 
Scaling Apache Storm (Hadoop Summit 2015)
Scaling Apache Storm (Hadoop Summit 2015)Scaling Apache Storm (Hadoop Summit 2015)
Scaling Apache Storm (Hadoop Summit 2015)
Robert Evans
 
JVM performance options. How it works
JVM performance options. How it worksJVM performance options. How it works
JVM performance options. How it works
Dmitriy Dumanskiy
 
Stream analysis with kafka native way and considerations about monitoring as ...
Stream analysis with kafka native way and considerations about monitoring as ...Stream analysis with kafka native way and considerations about monitoring as ...
Stream analysis with kafka native way and considerations about monitoring as ...
Andrew Yongjoon Kong
 
Multi-Tenant Storm Service on Hadoop Grid
Multi-Tenant Storm Service on Hadoop GridMulti-Tenant Storm Service on Hadoop Grid
Multi-Tenant Storm Service on Hadoop Grid
DataWorks Summit
 
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDBBuilding a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Cody Ray
 
Nodejs性能分析优化和分布式设计探讨
Nodejs性能分析优化和分布式设计探讨Nodejs性能分析优化和分布式设计探讨
Nodejs性能分析优化和分布式设计探讨
flyinweb
 
Internet of Things Data Science
Internet of Things Data ScienceInternet of Things Data Science
Internet of Things Data Science
Albert Bifet
 

More from SATOSHI TAGOMORI (20)

Ractor's speed is not light-speed
Ractor's speed is not light-speedRactor's speed is not light-speed
Ractor's speed is not light-speed
SATOSHI TAGOMORI
 
Good Things and Hard Things of SaaS Development/Operations
Good Things and Hard Things of SaaS Development/OperationsGood Things and Hard Things of SaaS Development/Operations
Good Things and Hard Things of SaaS Development/Operations
SATOSHI TAGOMORI
 
Maccro Strikes Back
Maccro Strikes BackMaccro Strikes Back
Maccro Strikes Back
SATOSHI TAGOMORI
 
Invitation to the dark side of Ruby
Invitation to the dark side of RubyInvitation to the dark side of Ruby
Invitation to the dark side of Ruby
SATOSHI TAGOMORI
 
Hijacking Ruby Syntax in Ruby (RubyConf 2018)
Hijacking Ruby Syntax in Ruby (RubyConf 2018)Hijacking Ruby Syntax in Ruby (RubyConf 2018)
Hijacking Ruby Syntax in Ruby (RubyConf 2018)
SATOSHI TAGOMORI
 
Make Your Ruby Script Confusing
Make Your Ruby Script ConfusingMake Your Ruby Script Confusing
Make Your Ruby Script Confusing
SATOSHI TAGOMORI
 
Hijacking Ruby Syntax in Ruby
Hijacking Ruby Syntax in RubyHijacking Ruby Syntax in Ruby
Hijacking Ruby Syntax in Ruby
SATOSHI TAGOMORI
 
Lock, Concurrency and Throughput of Exclusive Operations
Lock, Concurrency and Throughput of Exclusive OperationsLock, Concurrency and Throughput of Exclusive Operations
Lock, Concurrency and Throughput of Exclusive Operations
SATOSHI TAGOMORI
 
Data Processing and Ruby in the World
Data Processing and Ruby in the WorldData Processing and Ruby in the World
Data Processing and Ruby in the World
SATOSHI TAGOMORI
 
Planet-scale Data Ingestion Pipeline: Bigdam
Planet-scale Data Ingestion Pipeline: BigdamPlanet-scale Data Ingestion Pipeline: Bigdam
Planet-scale Data Ingestion Pipeline: Bigdam
SATOSHI TAGOMORI
 
Technologies, Data Analytics Service and Enterprise Business
Technologies, Data Analytics Service and Enterprise BusinessTechnologies, Data Analytics Service and Enterprise Business
Technologies, Data Analytics Service and Enterprise Business
SATOSHI TAGOMORI
 
Ruby and Distributed Storage Systems
Ruby and Distributed Storage SystemsRuby and Distributed Storage Systems
Ruby and Distributed Storage Systems
SATOSHI TAGOMORI
 
Perfect Norikra 2nd Season
Perfect Norikra 2nd SeasonPerfect Norikra 2nd Season
Perfect Norikra 2nd Season
SATOSHI TAGOMORI
 
Fluentd 101
Fluentd 101Fluentd 101
Fluentd 101
SATOSHI TAGOMORI
 
To Have Own Data Analytics Platform, Or NOT To
To Have Own Data Analytics Platform, Or NOT ToTo Have Own Data Analytics Platform, Or NOT To
To Have Own Data Analytics Platform, Or NOT To
SATOSHI TAGOMORI
 
The Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and ContainersThe Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and Containers
SATOSHI TAGOMORI
 
How To Write Middleware In Ruby
How To Write Middleware In RubyHow To Write Middleware In Ruby
How To Write Middleware In Ruby
SATOSHI TAGOMORI
 
Modern Black Mages Fighting in the Real World
Modern Black Mages Fighting in the Real WorldModern Black Mages Fighting in the Real World
Modern Black Mages Fighting in the Real World
SATOSHI TAGOMORI
 
Open Source Software, Distributed Systems, Database as a Cloud Service
Open Source Software, Distributed Systems, Database as a Cloud ServiceOpen Source Software, Distributed Systems, Database as a Cloud Service
Open Source Software, Distributed Systems, Database as a Cloud Service
SATOSHI TAGOMORI
 
Fluentd Overview, Now and Then
Fluentd Overview, Now and ThenFluentd Overview, Now and Then
Fluentd Overview, Now and Then
SATOSHI TAGOMORI
 
Ractor's speed is not light-speed
Ractor's speed is not light-speedRactor's speed is not light-speed
Ractor's speed is not light-speed
SATOSHI TAGOMORI
 
Good Things and Hard Things of SaaS Development/Operations
Good Things and Hard Things of SaaS Development/OperationsGood Things and Hard Things of SaaS Development/Operations
Good Things and Hard Things of SaaS Development/Operations
SATOSHI TAGOMORI
 
Invitation to the dark side of Ruby
Invitation to the dark side of RubyInvitation to the dark side of Ruby
Invitation to the dark side of Ruby
SATOSHI TAGOMORI
 
Hijacking Ruby Syntax in Ruby (RubyConf 2018)
Hijacking Ruby Syntax in Ruby (RubyConf 2018)Hijacking Ruby Syntax in Ruby (RubyConf 2018)
Hijacking Ruby Syntax in Ruby (RubyConf 2018)
SATOSHI TAGOMORI
 
Make Your Ruby Script Confusing
Make Your Ruby Script ConfusingMake Your Ruby Script Confusing
Make Your Ruby Script Confusing
SATOSHI TAGOMORI
 
Hijacking Ruby Syntax in Ruby
Hijacking Ruby Syntax in RubyHijacking Ruby Syntax in Ruby
Hijacking Ruby Syntax in Ruby
SATOSHI TAGOMORI
 
Lock, Concurrency and Throughput of Exclusive Operations
Lock, Concurrency and Throughput of Exclusive OperationsLock, Concurrency and Throughput of Exclusive Operations
Lock, Concurrency and Throughput of Exclusive Operations
SATOSHI TAGOMORI
 
Data Processing and Ruby in the World
Data Processing and Ruby in the WorldData Processing and Ruby in the World
Data Processing and Ruby in the World
SATOSHI TAGOMORI
 
Planet-scale Data Ingestion Pipeline: Bigdam
Planet-scale Data Ingestion Pipeline: BigdamPlanet-scale Data Ingestion Pipeline: Bigdam
Planet-scale Data Ingestion Pipeline: Bigdam
SATOSHI TAGOMORI
 
Technologies, Data Analytics Service and Enterprise Business
Technologies, Data Analytics Service and Enterprise BusinessTechnologies, Data Analytics Service and Enterprise Business
Technologies, Data Analytics Service and Enterprise Business
SATOSHI TAGOMORI
 
Ruby and Distributed Storage Systems
Ruby and Distributed Storage SystemsRuby and Distributed Storage Systems
Ruby and Distributed Storage Systems
SATOSHI TAGOMORI
 
Perfect Norikra 2nd Season
Perfect Norikra 2nd SeasonPerfect Norikra 2nd Season
Perfect Norikra 2nd Season
SATOSHI TAGOMORI
 
To Have Own Data Analytics Platform, Or NOT To
To Have Own Data Analytics Platform, Or NOT ToTo Have Own Data Analytics Platform, Or NOT To
To Have Own Data Analytics Platform, Or NOT To
SATOSHI TAGOMORI
 
The Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and ContainersThe Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and Containers
SATOSHI TAGOMORI
 
How To Write Middleware In Ruby
How To Write Middleware In RubyHow To Write Middleware In Ruby
How To Write Middleware In Ruby
SATOSHI TAGOMORI
 
Modern Black Mages Fighting in the Real World
Modern Black Mages Fighting in the Real WorldModern Black Mages Fighting in the Real World
Modern Black Mages Fighting in the Real World
SATOSHI TAGOMORI
 
Open Source Software, Distributed Systems, Database as a Cloud Service
Open Source Software, Distributed Systems, Database as a Cloud ServiceOpen Source Software, Distributed Systems, Database as a Cloud Service
Open Source Software, Distributed Systems, Database as a Cloud Service
SATOSHI TAGOMORI
 
Fluentd Overview, Now and Then
Fluentd Overview, Now and ThenFluentd Overview, Now and Then
Fluentd Overview, Now and Then
SATOSHI TAGOMORI
 
Ad

Recently uploaded (20)

6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
Jira Administration Training – Day 1 : Introduction
Jira Administration Training – Day 1 : IntroductionJira Administration Training – Day 1 : Introduction
Jira Administration Training – Day 1 : Introduction
Ravi Teja
 
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
James Anderson
 
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Nikki Chapple
 
The case for on-premises AI
The case for on-premises AIThe case for on-premises AI
The case for on-premises AI
Principled Technologies
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
Fortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in CybersecurityFortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in Cybersecurity
VICTOR MAESTRE RAMIREZ
 
Data Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any ApplicationData Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any Application
Safe Software
 
AI Trends - Mary Meeker
AI Trends - Mary MeekerAI Trends - Mary Meeker
AI Trends - Mary Meeker
Razin Mustafiz
 
Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Aaryan Kansari
 
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Peter Bittner
 
SDG 9000 Series: Unleashing multigigabit everywhere
SDG 9000 Series: Unleashing multigigabit everywhereSDG 9000 Series: Unleashing multigigabit everywhere
SDG 9000 Series: Unleashing multigigabit everywhere
Adtran
 
Measuring Microsoft 365 Copilot and Gen AI Success
Measuring Microsoft 365 Copilot and Gen AI SuccessMeasuring Microsoft 365 Copilot and Gen AI Success
Measuring Microsoft 365 Copilot and Gen AI Success
Nikki Chapple
 
Cyber Security Legal Framework in Nepal.pptx
Cyber Security Legal Framework in Nepal.pptxCyber Security Legal Framework in Nepal.pptx
Cyber Security Legal Framework in Nepal.pptx
Ghimire B.R.
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
Supercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMsSupercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMs
Francesco Corti
 
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath InsightsUiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPathCommunity
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
Evaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical ContentEvaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical Content
Paul Groth
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
Jira Administration Training – Day 1 : Introduction
Jira Administration Training – Day 1 : IntroductionJira Administration Training – Day 1 : Introduction
Jira Administration Training – Day 1 : Introduction
Ravi Teja
 
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
James Anderson
 
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Nikki Chapple
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
Fortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in CybersecurityFortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in Cybersecurity
VICTOR MAESTRE RAMIREZ
 
Data Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any ApplicationData Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any Application
Safe Software
 
AI Trends - Mary Meeker
AI Trends - Mary MeekerAI Trends - Mary Meeker
AI Trends - Mary Meeker
Razin Mustafiz
 
Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Aaryan Kansari
 
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Peter Bittner
 
SDG 9000 Series: Unleashing multigigabit everywhere
SDG 9000 Series: Unleashing multigigabit everywhereSDG 9000 Series: Unleashing multigigabit everywhere
SDG 9000 Series: Unleashing multigigabit everywhere
Adtran
 
Measuring Microsoft 365 Copilot and Gen AI Success
Measuring Microsoft 365 Copilot and Gen AI SuccessMeasuring Microsoft 365 Copilot and Gen AI Success
Measuring Microsoft 365 Copilot and Gen AI Success
Nikki Chapple
 
Cyber Security Legal Framework in Nepal.pptx
Cyber Security Legal Framework in Nepal.pptxCyber Security Legal Framework in Nepal.pptx
Cyber Security Legal Framework in Nepal.pptx
Ghimire B.R.
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
Supercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMsSupercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMs
Francesco Corti
 
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath InsightsUiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPathCommunity
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
Evaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical ContentEvaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical Content
Paul Groth
 
Ad

Norikra in Action (ver. 2014 spring)