Your first TensorFlow programming with JupyterEtsuji Nakai
This document provides an introduction and overview of TensorFlow and how to use it with Jupyter notebooks on Google Cloud Platform (GCP). It explains that TensorFlow is Google's open source library for machine learning and was launched in 2015. It is used for many production machine learning projects. Jupyter is introduced as an interactive web-based platform for data analysis that can also be used as a TensorFlow runtime environment. The document then provides details on the programming paradigm and model of TensorFlow, giving an example of using it for a least squares method problem to predict temperatures. It explains the key components of defining a model, loss function, and training algorithm to optimize variables in a session.
Machine Learning Basics for Web Application DevelopersEtsuji Nakai
This document provides an overview of machine learning basics for web application developers. It discusses linear binary classifiers and logistic regression, how to measure model fitness with loss functions, and graphical understandings of linear classifiers. It then covers linear multiclass classifiers using softmax functions, image classification with neural networks, and ways to improve accuracy using convolutional neural networks. Finally, it discusses client applications that use pre-trained machine learning models through API services and examples of smile detection and cucumber classification.
This document provides an introduction to deep Q-networks (DQN) for beginners. It explains that DQNs can be used to learn optimal actions in video games by collecting data on screen states, player actions, rewards, and next states without knowing the game's rules. The key idea is to approximate a "Q function" that represents the total expected rewards if optimal actions are taken from each state onward. A deep neural network is used as the candidate function, and its parameters are adjusted using an error function to satisfy the Q-learning equation. To collect the necessary state-action data, the game is played with a mix of random exploration and exploiting the current best actions from the Q-network.
Introducton to Convolutional Nerural Network with TensorFlowEtsuji Nakai
Explaining basic mechanism of the Convolutional Neural Network with sample TesnsorFlow codes.
Sample codes: https://github.com/enakai00/cnn_introduction
This document provides an introduction to deep Q-networks (DQN) for beginners. It explains that DQNs can be used to learn optimal actions in video games by collecting data on screen states, player actions, rewards, and next states without knowing the game's rules. The key idea is to approximate a "Q function" that represents the total expected rewards if optimal actions are taken from each state onward. A deep neural network is used as the candidate function, and its parameters are adjusted using an error function to satisfy the Q-learning equation. To collect the necessary state-action data, the game is played with a mix of random exploration and exploiting the current best actions from the Q-network.
Introducton to Convolutional Nerural Network with TensorFlowEtsuji Nakai
Explaining basic mechanism of the Convolutional Neural Network with sample TesnsorFlow codes.
Sample codes: https://github.com/enakai00/cnn_introduction
レッドハット 朝活セミナー(1/15, 2/18)の下記セッションでの発表予定資料です。
「Red Hat Enterprise Linux OpenStack Platform環境でのDocker活用テクニック」
https://www.redhat.com/ja/about/events/red-hat-asakatsu-seminar-2016