SlideShare a Scribd company logo
Powerful Full-Text Search
       with Solr
            Yonik Seeley
          yonik@apache.org
         Web 2.0 Expo, Berlin
          8 November 2007


               download at
      http://www.apache.org/~yonik
What is Lucene
• High performance, scalable, full-text
  search library
• Focus: Indexing + Searching Documents
  – “Document” is just a list of name+value pairs
• No crawlers or document parsing
• Flexible Text Analysis (tokenizers + token
  filters)
• 100% Java, no dependencies, no config
  files
What is Solr
•   A full text search server based on Lucene
•   XML/HTTP, JSON Interfaces
•   Faceted Search (category counting)
•   Flexible data schema to define types and fields
•   Hit Highlighting
•   Configurable Advanced Caching
•   Index Replication
•   Extensible Open Architecture, Plugins
•   Web Administration Interface
•   Written in Java5, deployable as a WAR
Basic App                                HTML


 Indexer
                                                Webapp
       Document
super_name: Mr. Fantastic
                                                Query            Query Response
name: Reed Richards
                                            (powers:agility)     (matching docs)
category: superhero
powers: elasticity


  http://solr/update                  http://solr/select


                         admin   update       select       XML response writer
                                                           JSON response writer
                                           Solr
     Servlet Container




                         XML Update Handler            Standard request handler
                         CSV Update Handler            Custom request handler

                                              Lucene
Indexing Data
HTTP POST to http://localhost:8983/solr/update
<add><doc>
 <field name=“id”>05991</field>
 <field name=“name”>Peter Parker</field>
 <field name=“supername”>Spider-Man</field>
 <field name=“category”>superhero</field>
 <field name=“powers”>agility</field>
 <field name=“powers”>spider-sense</field>
</doc></add>
Indexing CSV data
Iron Man, Tony Stark, superhero, powered armor | flight
Sandman, William Baker|Flint Marko, supervillain, sand transform
Wolverine,James Howlett|Logan, superhero, healing|adamantium
Magneto, Erik Lehnsherr, supervillain, magnetism|electricity




 http://localhost:8983/solr/update/csv?
         fieldnames=supername,name,category,powers
         &separator=,
         &f.name.split=true&f.name.separator=|
         &f.powers.split=true&f.powers.separator=|
Data upload methods
URL=http://localhost:8983/solr/update/csv


• HTTP POST body (curl, HttpClient, etc)
curl $URL -H 'Content-type:text/plain;
  charset=utf-8' --data-binary @info.csv
• Multi-part file upload (browsers)
• Request parameter
?stream.body=‘Cyclops, Scott Summers,…’
• Streaming from URL (must enable)
?stream.url=file://data/info.csv
Indexing with SolrJ
// Solr’s Java Client API… remote or embedded/local!
SolrServer server = new
   CommonsHttpSolrServer(quot;http://localhost:8983/solrquot;);

SolrInputDocument doc = new SolrInputDocument();
doc.addField(quot;supernamequot;,quot;Daredevilquot;);
doc.addField(quot;namequot;,quot;Matt Murdockquot;);
doc.addField(“categoryquot;,“superheroquot;);

server.add(doc);
server.commit();
Deleting Documents
• Delete by Id, most efficient
<delete>
 <id>05591</id>
 <id>32552</id>
</delete>

• Delete by Query
<delete>
 <query>category:supervillain</query>
</delete>
Commit
• <commit/> makes changes visible
  – Triggers static cache warming in
    solrconfig.xml
  – Triggers autowarming from existing caches
• <optimize/> same as commit, merges all
  index segments for faster searching
 _0.fnm
 _0.fdt
 _0.fdx
 _0.frq
                     Lucene Index Segments
 _0.tis
 _0.tii
 _0.prx     _1.fnm
 _0.nrm     _1.fdt
            _1.fdx
 _0_1.del   […]
Searching
http://localhost:8983/solr/select?q=powers:agility
       &start=0&rows=2&fl=supername,category
<response>
 <result numFound=“427quot; start=quot;0quot;>
   <doc>
    <str name=“supernamequot;>Spider-Man</str>
    <str name=“category”>superhero</str>
   </doc>
   <doc>
    <str name=“supernamequot;>Msytique</str>
    <str name=“category”>supervillain</str>
   </doc>
 </result>
</response>
Response Format
• Add &wt=json for JSON formatted response

{“resultquot;: {quot;numFoundquot;:427, quot;startquot;:0,
  quot;docsquot;: [
     {“supername”:”Spider-Man”, “category”:”superhero”},
     {“supername”:” Msytique”, “category”:” supervillain”}
   ]
}

• Also Python, Ruby, PHP, SerializedPHP, XSLT
Scoring
• Query results are sorted by score descending
• VSM – Vector Space Model
• tf – term frequency: numer of matching terms in field
• lengthNorm – number of tokens in field
• idf – inverse document frequency
• coord – coordination factor, number of matching
  terms
• document boost
• query clause boost

http://lucene.apache.org/java/docs/scoring.html
Explain
http://solr/select?q=super fast&indent=on&debugQuery=on

<lst name=quot;debugquot;>
 <lst name=quot;explainquot;>
   <str name=quot;id=Flash,internal_docid=6quot;>
0.16389132 = (MATCH) product of:
 0.32778263 = (MATCH) sum of:
   0.32778263 = (MATCH) weight(text:fast in 6), product of:
    0.5012072 = queryWeight(text:fast), product of:
      2.466337 = idf(docFreq=5)
      0.20321926 = queryNorm
    0.65398633 = (MATCH) fieldWeight(text:fast in 6), product of:
      1.4142135 = tf(termFreq(text:fast)=2)
      2.466337 = idf(docFreq=5)
      0.1875 = fieldNorm(field=fast, doc=6)
 0.5 = coord(1/2)
  </str>
  <str name=quot;id=Superman,internal_docid=7quot;>
0.1365761 = (MATCH) product of:
Lucene Query Syntax
1. justice league
   • Equiv: justice OR league
   • QueryParser default operator is “OR”/optional
2. +justice +league –name:aquaman
   • Equiv: justice AND league NOT name:aquaman
3. “justice league” –name:aquaman
4. title:spiderman^10 description:spiderman
5. description:“spiderman movie”~100
Lucene Query Examples2
1. releaseDate:[2000 TO 2007]
2. Wildcard searches: sup?r, su*r, super*
3. spider~
  •   Fuzzy search: Levenshtein distance
  •   Optional minimum similarity: spider~0.7
4. *:*
5. (Superman AND “Lex Luthor”) OR
   (+Batman +Joker)
DisMax Query Syntax
•   Good for handling raw user queries
    – Balanced quotes for phrase query
    – ‘+’ for required, ‘-’ for prohibited
    – Separates query terms from query structure
http://solr/select?qt=dismax
 &q=super man                       // the user query
 &qf=title^3 subject^2 body         // field to query
 &pf=title^2,body                   // fields to do phrase queries
 &ps=100                            // slop for those phrase q’s
 &tie=.1                            // multi-field match reward
 &mm=2                              // # of terms that should match
 &bf=popularity                     // boost function
DisMax Query Form
• The expanded Lucene Query:

+( DisjunctionMaxQuery( title:super^3 |
  subject:super^2 | body:super)
  DisjunctionMaxQuery( title:man^3 |
  subject:man^2 | body:man)
)
DisjunctionMaxQuery(title:”super man”~100^2
  body:”super man”~100)
FunctionQuery(popularity)

• Tip: set up your own request handler with default parameters
  to avoid clients having to specify them
Function Query
• Allows adding function of field value to score
    – Boost recently added or popular documents
•   Current parser only supports function notation
•   Example: log(sum(popularity,1))
•   sum, product, div, log, sqrt, abs, pow
•   scale(x, target_min, target_max)
    – calculates min & max of x across all docs
• map(x, min, max, target)
    – useful for dealing with defaults
Boosted Query
• Score is multiplied instead of added
  – New local params <!...> syntax added
&q=<!boost b=sqrt(popularity)>super man

• Parameter dereferencing in local params
&q=<!boost b=$boost v=$userq>
&boost=sqrt(popularity)
&userq=super man
Analysis & Search Relevancy
 Document Indexing Analysis                                  Query Analysis

LexCorp BFG-9000                        Lex corp bfg9000

  WhitespaceTokenizer                        WhitespaceTokenizer

 LexCorp      BFG-9000                      Lex     corp    bfg9000

WordDelimiterFilter catenateWords=1     WordDelimiterFilter catenateWords=0

 Lex       Corp    BFG    9000              Lex     corp     bfg      9000
        LexCorp

        LowercaseFilter                           LowercaseFilter

 lex       corp     bfg   9000              lex     corp     bfg      9000
        lexcorp
                                 A Match!
Configuring Relevancy
<fieldType name=quot;textquot; class=quot;solr.TextFieldquot;>
<analyzer>
  <tokenizer class=quot;solr.WhitespaceTokenizerFactoryquot;/>
  <filter class=quot;solr.LowerCaseFilterFactoryquot;/>
  <filter class=quot;solr.SynonymFilterFactoryquot;
          synonyms=quot;synonyms.txt“/>
  <filter class=quot;solr.StopFilterFactory“
          words=“stopwords.txt”/>
  <filter class=quot;solr.EnglishPorterFilterFactoryquot;
          protected=quot;protwords.txtquot;/>
</analyzer>
</fieldType>
Field Definitions
• Field Attributes: name, type, indexed, stored,
  multiValued, omitNorms, termVectors
<field name=quot;id“       type=quot;stringquot;     indexed=quot;truequot; stored=quot;truequot;/>
<field name=quot;sku“      type=quot;textTight” indexed=quot;truequot; stored=quot;truequot;/>
<field name=quot;name“ type=quot;text“          indexed=quot;truequot; stored=quot;truequot;/>
<field name=“inStock“ type=“boolean“ indexed=quot;true“ stored=“falsequot;/>
<field name=“price“    type=“sfloat“    indexed=quot;true“ stored=“falsequot;/>
<field name=quot;category“ type=quot;text_ws“ indexed=quot;truequot; stored=quot;true“
   multiValued=quot;truequot;/>

• Dynamic Fields
<dynamicField name=quot;*_iquot; type=quot;sint“ indexed=quot;truequot; stored=quot;truequot;/>
<dynamicField name=quot;*_squot; type=quot;string“ indexed=quot;truequot; stored=quot;truequot;/>
<dynamicField name=quot;*_tquot; type=quot;text“ indexed=quot;truequot; stored=quot;truequot;/>
copyField
• Copies one field to another at index time
• Usecase #1: Analyze same field different ways
  – copy into a field with a different analyzer
  – boost exact-case, exact-punctuation matches
  – language translations, thesaurus, soundex

<field name=“title” type=“text”/>
<field name=“title_exact” type=“text_exact”
  stored=“false”/>
<copyField source=“title” dest=“title_exact”/>

• Usecase #2: Index multiple fields into single
  searchable field
Add Powerful Full Text Search to Your Web App with Solr
Add Powerful Full Text Search to Your Web App with Solr
Add Powerful Full Text Search to Your Web App with Solr
Facet Query
http://solr/select?q=foo&wt=json&indent=on
 &facet=true&facet.field=cat
 &facet.query=price:[0 TO 100]
 &facet.query=manu:IBM

{quot;responsequot;:{quot;numFoundquot;:26,quot;startquot;:0,quot;docsquot;:[…]},
 “facet_countsquot;:{
   quot;facet_queriesquot;:{
      quot;price:[0 TO 100]quot;:6,
      “manu:IBMquot;:2},
   quot;facet_fieldsquot;:{
      quot;catquot;:[ quot;electronicsquot;,14, quot;memoryquot;,3,
              quot;cardquot;,2, quot;connectorquot;,2]
   }}}
Filters
• Filters are restrictions in addition to the query
• Use in faceting to narrow the results
• Filters are cached separately for speed

1. User queries for memory, query sent to solr is
 &q=memory&fq=inStock:true&facet=true&…
2. User selects 1GB memory size
 &q=memory&fq=inStock:true&fq=size:1GB&…
3. User selects DDR2 memory type
 &q=memory&fq=inStock:true&fq=size:1GB
           &fq=type:DDR2&…
Highlighting
http://solr/select?q=lcd&wt=json&indent=on
 &hl=true&hl.fl=features

{quot;responsequot;:{quot;numFoundquot;:5,quot;startquot;:0,quot;docsquot;:[
    {quot;idquot;:quot;3007WFPquot;, “price”:899.95}, …]
quot;highlightingquot;:{
  quot;3007WFPquot;:{ quot;featuresquot;:[quot;30quot; TFT active matrix
   <em>LCD</em>, 2560 x 1600”
  quot;VA902Bquot;:{ quot;featuresquot;:[quot;19quot; TFT active matrix
   <em>LCD</em>, 8ms response time, 1280 x
   1024 native resolutionquot;]}}}
MoreLikeThis
• Selects documents that are “similar” to the
  documents matching the main query.
&q=id:6H500F0
  &mlt=true&mlt.fl=name,cat,features
quot;moreLikeThisquot;:{
  quot;6H500F0quot;:{quot;numFoundquot;:5,quot;startquot;:0,
   quot;docs”: [
      {quot;namequot;:quot;Apple 60 GB iPod with Video
         Playback Blackquot;, quot;pricequot;:399.0,
       quot;inStockquot;:true, quot;popularityquot;:10, […]
      }, […]
    ]
[…]
High Availability                           Dynamic
                                                                  HTML
                              Appservers                          Generation




                                                                       HTTP search
                            Load Balancer                              requests

                            Solr Searchers



                                              Index Replication

            admin queries
                                             updates
                 updates                                                   DB
                                                             Updater
admin terminal                Solr Master
Resources
• WWW
  – http://lucene.apache.org/solr
  – http://lucene.apache.org/solr/tutorial.html
  – http://wiki.apache.org/solr/
• Mailing Lists
  – solr-user-subscribe@lucene.apache.org
  – solr-dev-subscribe@lucene.apache.org

More Related Content

Add Powerful Full Text Search to Your Web App with Solr

  • 1. Powerful Full-Text Search with Solr Yonik Seeley [email protected] Web 2.0 Expo, Berlin 8 November 2007 download at http://www.apache.org/~yonik
  • 2. What is Lucene • High performance, scalable, full-text search library • Focus: Indexing + Searching Documents – “Document” is just a list of name+value pairs • No crawlers or document parsing • Flexible Text Analysis (tokenizers + token filters) • 100% Java, no dependencies, no config files
  • 3. What is Solr • A full text search server based on Lucene • XML/HTTP, JSON Interfaces • Faceted Search (category counting) • Flexible data schema to define types and fields • Hit Highlighting • Configurable Advanced Caching • Index Replication • Extensible Open Architecture, Plugins • Web Administration Interface • Written in Java5, deployable as a WAR
  • 4. Basic App HTML Indexer Webapp Document super_name: Mr. Fantastic Query Query Response name: Reed Richards (powers:agility) (matching docs) category: superhero powers: elasticity http://solr/update http://solr/select admin update select XML response writer JSON response writer Solr Servlet Container XML Update Handler Standard request handler CSV Update Handler Custom request handler Lucene
  • 5. Indexing Data HTTP POST to http://localhost:8983/solr/update <add><doc> <field name=“id”>05991</field> <field name=“name”>Peter Parker</field> <field name=“supername”>Spider-Man</field> <field name=“category”>superhero</field> <field name=“powers”>agility</field> <field name=“powers”>spider-sense</field> </doc></add>
  • 6. Indexing CSV data Iron Man, Tony Stark, superhero, powered armor | flight Sandman, William Baker|Flint Marko, supervillain, sand transform Wolverine,James Howlett|Logan, superhero, healing|adamantium Magneto, Erik Lehnsherr, supervillain, magnetism|electricity http://localhost:8983/solr/update/csv? fieldnames=supername,name,category,powers &separator=, &f.name.split=true&f.name.separator=| &f.powers.split=true&f.powers.separator=|
  • 7. Data upload methods URL=http://localhost:8983/solr/update/csv • HTTP POST body (curl, HttpClient, etc) curl $URL -H 'Content-type:text/plain; charset=utf-8' --data-binary @info.csv • Multi-part file upload (browsers) • Request parameter ?stream.body=‘Cyclops, Scott Summers,…’ • Streaming from URL (must enable) ?stream.url=file://data/info.csv
  • 8. Indexing with SolrJ // Solr’s Java Client API… remote or embedded/local! SolrServer server = new CommonsHttpSolrServer(quot;http://localhost:8983/solrquot;); SolrInputDocument doc = new SolrInputDocument(); doc.addField(quot;supernamequot;,quot;Daredevilquot;); doc.addField(quot;namequot;,quot;Matt Murdockquot;); doc.addField(“categoryquot;,“superheroquot;); server.add(doc); server.commit();
  • 9. Deleting Documents • Delete by Id, most efficient <delete> <id>05591</id> <id>32552</id> </delete> • Delete by Query <delete> <query>category:supervillain</query> </delete>
  • 10. Commit • <commit/> makes changes visible – Triggers static cache warming in solrconfig.xml – Triggers autowarming from existing caches • <optimize/> same as commit, merges all index segments for faster searching _0.fnm _0.fdt _0.fdx _0.frq Lucene Index Segments _0.tis _0.tii _0.prx _1.fnm _0.nrm _1.fdt _1.fdx _0_1.del […]
  • 11. Searching http://localhost:8983/solr/select?q=powers:agility &start=0&rows=2&fl=supername,category <response> <result numFound=“427quot; start=quot;0quot;> <doc> <str name=“supernamequot;>Spider-Man</str> <str name=“category”>superhero</str> </doc> <doc> <str name=“supernamequot;>Msytique</str> <str name=“category”>supervillain</str> </doc> </result> </response>
  • 12. Response Format • Add &wt=json for JSON formatted response {“resultquot;: {quot;numFoundquot;:427, quot;startquot;:0, quot;docsquot;: [ {“supername”:”Spider-Man”, “category”:”superhero”}, {“supername”:” Msytique”, “category”:” supervillain”} ] } • Also Python, Ruby, PHP, SerializedPHP, XSLT
  • 13. Scoring • Query results are sorted by score descending • VSM – Vector Space Model • tf – term frequency: numer of matching terms in field • lengthNorm – number of tokens in field • idf – inverse document frequency • coord – coordination factor, number of matching terms • document boost • query clause boost http://lucene.apache.org/java/docs/scoring.html
  • 14. Explain http://solr/select?q=super fast&indent=on&debugQuery=on <lst name=quot;debugquot;> <lst name=quot;explainquot;> <str name=quot;id=Flash,internal_docid=6quot;> 0.16389132 = (MATCH) product of: 0.32778263 = (MATCH) sum of: 0.32778263 = (MATCH) weight(text:fast in 6), product of: 0.5012072 = queryWeight(text:fast), product of: 2.466337 = idf(docFreq=5) 0.20321926 = queryNorm 0.65398633 = (MATCH) fieldWeight(text:fast in 6), product of: 1.4142135 = tf(termFreq(text:fast)=2) 2.466337 = idf(docFreq=5) 0.1875 = fieldNorm(field=fast, doc=6) 0.5 = coord(1/2) </str> <str name=quot;id=Superman,internal_docid=7quot;> 0.1365761 = (MATCH) product of:
  • 15. Lucene Query Syntax 1. justice league • Equiv: justice OR league • QueryParser default operator is “OR”/optional 2. +justice +league –name:aquaman • Equiv: justice AND league NOT name:aquaman 3. “justice league” –name:aquaman 4. title:spiderman^10 description:spiderman 5. description:“spiderman movie”~100
  • 16. Lucene Query Examples2 1. releaseDate:[2000 TO 2007] 2. Wildcard searches: sup?r, su*r, super* 3. spider~ • Fuzzy search: Levenshtein distance • Optional minimum similarity: spider~0.7 4. *:* 5. (Superman AND “Lex Luthor”) OR (+Batman +Joker)
  • 17. DisMax Query Syntax • Good for handling raw user queries – Balanced quotes for phrase query – ‘+’ for required, ‘-’ for prohibited – Separates query terms from query structure http://solr/select?qt=dismax &q=super man // the user query &qf=title^3 subject^2 body // field to query &pf=title^2,body // fields to do phrase queries &ps=100 // slop for those phrase q’s &tie=.1 // multi-field match reward &mm=2 // # of terms that should match &bf=popularity // boost function
  • 18. DisMax Query Form • The expanded Lucene Query: +( DisjunctionMaxQuery( title:super^3 | subject:super^2 | body:super) DisjunctionMaxQuery( title:man^3 | subject:man^2 | body:man) ) DisjunctionMaxQuery(title:”super man”~100^2 body:”super man”~100) FunctionQuery(popularity) • Tip: set up your own request handler with default parameters to avoid clients having to specify them
  • 19. Function Query • Allows adding function of field value to score – Boost recently added or popular documents • Current parser only supports function notation • Example: log(sum(popularity,1)) • sum, product, div, log, sqrt, abs, pow • scale(x, target_min, target_max) – calculates min & max of x across all docs • map(x, min, max, target) – useful for dealing with defaults
  • 20. Boosted Query • Score is multiplied instead of added – New local params <!...> syntax added &q=<!boost b=sqrt(popularity)>super man • Parameter dereferencing in local params &q=<!boost b=$boost v=$userq> &boost=sqrt(popularity) &userq=super man
  • 21. Analysis & Search Relevancy Document Indexing Analysis Query Analysis LexCorp BFG-9000 Lex corp bfg9000 WhitespaceTokenizer WhitespaceTokenizer LexCorp BFG-9000 Lex corp bfg9000 WordDelimiterFilter catenateWords=1 WordDelimiterFilter catenateWords=0 Lex Corp BFG 9000 Lex corp bfg 9000 LexCorp LowercaseFilter LowercaseFilter lex corp bfg 9000 lex corp bfg 9000 lexcorp A Match!
  • 22. Configuring Relevancy <fieldType name=quot;textquot; class=quot;solr.TextFieldquot;> <analyzer> <tokenizer class=quot;solr.WhitespaceTokenizerFactoryquot;/> <filter class=quot;solr.LowerCaseFilterFactoryquot;/> <filter class=quot;solr.SynonymFilterFactoryquot; synonyms=quot;synonyms.txt“/> <filter class=quot;solr.StopFilterFactory“ words=“stopwords.txt”/> <filter class=quot;solr.EnglishPorterFilterFactoryquot; protected=quot;protwords.txtquot;/> </analyzer> </fieldType>
  • 23. Field Definitions • Field Attributes: name, type, indexed, stored, multiValued, omitNorms, termVectors <field name=quot;id“ type=quot;stringquot; indexed=quot;truequot; stored=quot;truequot;/> <field name=quot;sku“ type=quot;textTight” indexed=quot;truequot; stored=quot;truequot;/> <field name=quot;name“ type=quot;text“ indexed=quot;truequot; stored=quot;truequot;/> <field name=“inStock“ type=“boolean“ indexed=quot;true“ stored=“falsequot;/> <field name=“price“ type=“sfloat“ indexed=quot;true“ stored=“falsequot;/> <field name=quot;category“ type=quot;text_ws“ indexed=quot;truequot; stored=quot;true“ multiValued=quot;truequot;/> • Dynamic Fields <dynamicField name=quot;*_iquot; type=quot;sint“ indexed=quot;truequot; stored=quot;truequot;/> <dynamicField name=quot;*_squot; type=quot;string“ indexed=quot;truequot; stored=quot;truequot;/> <dynamicField name=quot;*_tquot; type=quot;text“ indexed=quot;truequot; stored=quot;truequot;/>
  • 24. copyField • Copies one field to another at index time • Usecase #1: Analyze same field different ways – copy into a field with a different analyzer – boost exact-case, exact-punctuation matches – language translations, thesaurus, soundex <field name=“title” type=“text”/> <field name=“title_exact” type=“text_exact” stored=“false”/> <copyField source=“title” dest=“title_exact”/> • Usecase #2: Index multiple fields into single searchable field
  • 28. Facet Query http://solr/select?q=foo&wt=json&indent=on &facet=true&facet.field=cat &facet.query=price:[0 TO 100] &facet.query=manu:IBM {quot;responsequot;:{quot;numFoundquot;:26,quot;startquot;:0,quot;docsquot;:[…]}, “facet_countsquot;:{ quot;facet_queriesquot;:{ quot;price:[0 TO 100]quot;:6, “manu:IBMquot;:2}, quot;facet_fieldsquot;:{ quot;catquot;:[ quot;electronicsquot;,14, quot;memoryquot;,3, quot;cardquot;,2, quot;connectorquot;,2] }}}
  • 29. Filters • Filters are restrictions in addition to the query • Use in faceting to narrow the results • Filters are cached separately for speed 1. User queries for memory, query sent to solr is &q=memory&fq=inStock:true&facet=true&… 2. User selects 1GB memory size &q=memory&fq=inStock:true&fq=size:1GB&… 3. User selects DDR2 memory type &q=memory&fq=inStock:true&fq=size:1GB &fq=type:DDR2&…
  • 30. Highlighting http://solr/select?q=lcd&wt=json&indent=on &hl=true&hl.fl=features {quot;responsequot;:{quot;numFoundquot;:5,quot;startquot;:0,quot;docsquot;:[ {quot;idquot;:quot;3007WFPquot;, “price”:899.95}, …] quot;highlightingquot;:{ quot;3007WFPquot;:{ quot;featuresquot;:[quot;30quot; TFT active matrix <em>LCD</em>, 2560 x 1600” quot;VA902Bquot;:{ quot;featuresquot;:[quot;19quot; TFT active matrix <em>LCD</em>, 8ms response time, 1280 x 1024 native resolutionquot;]}}}
  • 31. MoreLikeThis • Selects documents that are “similar” to the documents matching the main query. &q=id:6H500F0 &mlt=true&mlt.fl=name,cat,features quot;moreLikeThisquot;:{ quot;6H500F0quot;:{quot;numFoundquot;:5,quot;startquot;:0, quot;docs”: [ {quot;namequot;:quot;Apple 60 GB iPod with Video Playback Blackquot;, quot;pricequot;:399.0, quot;inStockquot;:true, quot;popularityquot;:10, […] }, […] ] […]
  • 32. High Availability Dynamic HTML Appservers Generation HTTP search Load Balancer requests Solr Searchers Index Replication admin queries updates updates DB Updater admin terminal Solr Master
  • 33. Resources • WWW – http://lucene.apache.org/solr – http://lucene.apache.org/solr/tutorial.html – http://wiki.apache.org/solr/ • Mailing Lists – [email protected][email protected]