【DL輪読会】Efficiently Modeling Long Sequences with Structured State SpacesDeep Learning JP
This document summarizes a research paper on modeling long-range dependencies in sequence data using structured state space models and deep learning. The proposed S4 model (1) derives recurrent and convolutional representations of state space models, (2) improves long-term memory using HiPPO matrices, and (3) efficiently computes state space model convolution kernels. Experiments show S4 outperforms existing methods on various long-range dependency tasks, achieves fast and memory-efficient computation comparable to efficient Transformers, and performs competitively as a general sequence model.
This document summarizes a presentation about variational autoencoders (VAEs) presented at the ICLR 2016 conference. The document discusses 5 VAE-related papers presented at ICLR 2016, including Importance Weighted Autoencoders, The Variational Fair Autoencoder, Generating Images from Captions with Attention, Variational Gaussian Process, and Variationally Auto-Encoded Deep Gaussian Processes. It also provides background on variational inference and VAEs, explaining how VAEs use neural networks to model probability distributions and maximize a lower bound on the log likelihood.
【DL輪読会】Efficiently Modeling Long Sequences with Structured State SpacesDeep Learning JP
This document summarizes a research paper on modeling long-range dependencies in sequence data using structured state space models and deep learning. The proposed S4 model (1) derives recurrent and convolutional representations of state space models, (2) improves long-term memory using HiPPO matrices, and (3) efficiently computes state space model convolution kernels. Experiments show S4 outperforms existing methods on various long-range dependency tasks, achieves fast and memory-efficient computation comparable to efficient Transformers, and performs competitively as a general sequence model.
This document summarizes a presentation about variational autoencoders (VAEs) presented at the ICLR 2016 conference. The document discusses 5 VAE-related papers presented at ICLR 2016, including Importance Weighted Autoencoders, The Variational Fair Autoencoder, Generating Images from Captions with Attention, Variational Gaussian Process, and Variationally Auto-Encoded Deep Gaussian Processes. It also provides background on variational inference and VAEs, explaining how VAEs use neural networks to model probability distributions and maximize a lower bound on the log likelihood.
Guidance for beginners and experts on how to set up a Windows driver developm...Atomu Hidaka
This explains how to build a Windows driver development environment that can be used immediately by beginners and experts alike. The author, who has extensive experience developing various Windows drivers, shows the latest and simplest ways to use Visual Studio and WDK.