Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 7;41(1):e1.
doi: 10.1093/nar/gks808. Epub 2012 Aug 28.

Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies

Affiliations

Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies

Anna Klindworth et al. Nucleic Acids Res. .

Abstract

16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of 'best available' primer pairs for Bacteria and Archaea for three amplicon size classes (100-400, 400-1000, ≥ 1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Taxonomic distribution of 16S rRNA gene sequences gained from a time series of three different surface water samples at Helgoland Roads in the North Sea, (A) 16S pyrotags generated from PCR and sequenced with Roche’s 454 pyrosequencing (relative abundance, percentage of total counts) (B) 16S sequences gained from metagenome studies (relative abundance, percentage of total counts).

Similar articles

Cited by

References

    1. Nossa C.W., Oberdorf W.E., Yang L., Aas J.A., Paster B.J., Desantis T.Z., Brodie E.L., Malamud D., Poles M.A., Pei Z. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. WJG. 2010;16:4135–4144. - PMC - PubMed
    1. Medini D., Serruto D., Parkhill J., Relman D.A., Donati C., Moxon R., Falkow S., Rappuoli R. Microbiology in the post-genomic era. Nat. Rev. Microbiol. 2008;6:419–430. - PubMed
    1. Mardis E.R. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008;24:133–141. - PubMed
    1. Armougom F., Raoult D. Exploring microbial diversity using 16S rRNA high-throughput methods. J. Comput. Sci. Syst. Biol. 2009;2:74–92.
    1. Margulies M., Egholm M., Altman W.E., Attiya S., Bader J.S., Bemben L.A., Berka J., Braverman M.S., Chen Y.J., Chen Z., et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–380. - PMC - PubMed

Publication types