%PDF-1.4
5 0 obj
<< /S /GoTo /D (section.1) >>
endobj
8 0 obj
(Motivation)
endobj
9 0 obj
<< /S /GoTo /D (section.2) >>
endobj
12 0 obj
(Finite abelian groups)
endobj
13 0 obj
<< /S /GoTo /D (subsection.2.1) >>
endobj
16 0 obj
(Smith canonical form)
endobj
17 0 obj
<< /S /GoTo /D (subsection.2.2) >>
endobj
20 0 obj
(Primary canonical form)
endobj
21 0 obj
<< /S /GoTo /D (section.3) >>
endobj
24 0 obj
(M\366bius inversion)
endobj
25 0 obj
<< /S /GoTo /D (section.4) >>
endobj
28 0 obj
(The units modulo n)
endobj
29 0 obj
<< /S /GoTo /D (section.5) >>
endobj
32 0 obj
(Carmichael's lambda-function)
endobj
33 0 obj
<< /S /GoTo /D (subsection.5.1) >>
endobj
36 0 obj
(Denominators of Bernoulli numbers)
endobj
37 0 obj
<< /S /GoTo /D (subsection.5.2) >>
endobj
40 0 obj
(p-rank and p-exponent)
endobj
41 0 obj
<< /S /GoTo /D (section.6) >>
endobj
44 0 obj
(Primitive lambda-roots)
endobj
45 0 obj
<< /S /GoTo /D (subsection.6.1) >>
endobj
48 0 obj
(Another formula)
endobj
49 0 obj
<< /S /GoTo /D (subsection.6.2) >>
endobj
52 0 obj
(Fraternities)
endobj
53 0 obj
<< /S /GoTo /D (section.7) >>
endobj
56 0 obj
(Some special structures for the units)
endobj
57 0 obj
<< /S /GoTo /D (section.8) >>
endobj
60 0 obj
(Negating and non-negating PLRs)
endobj
61 0 obj
<< /S /GoTo /D (subsection.8.1) >>
endobj
64 0 obj
(A refined canonical form)
endobj
65 0 obj
<< /S /GoTo /D (subsection.8.2) >>
endobj
68 0 obj
(Generators differing by 1)
endobj
69 0 obj
<< /S /GoTo /D (subsection.8.3) >>
endobj
72 0 obj
(Existence of negating PLRs)
endobj
73 0 obj
<< /S /GoTo /D (section.9) >>
endobj
76 0 obj
(Inward and outward PLRs)
endobj
77 0 obj
<< /S /GoTo /D (section.10) >>
endobj
80 0 obj
(Perfect, imperfect and aberrant PLRs)
endobj
81 0 obj
<< /S /GoTo /D (subsection.10.1) >>
endobj
84 0 obj
(Deeply aberrant and nearly perfect PLRs)
endobj
85 0 obj
<< /S /GoTo /D (section.11) >>
endobj
88 0 obj
(Further properties of PLRs)
endobj
89 0 obj
<< /S /GoTo /D (section.12) >>
endobj
92 0 obj
(Tables of PLRs)
endobj
93 0 obj
<< /S /GoTo /D (subsection.12.1) >>
endobj
96 0 obj
(PLRs for composite odd multiples of 3)
endobj
97 0 obj
<< /S /GoTo /D (subsection.12.2) >>
endobj
100 0 obj
(PLRs for composite odd non-multiples of 3)
endobj
101 0 obj
<< /S /GoTo /D [102 0 R /FitH ] >>
endobj
104 0 obj <<
/Length 2079
/Filter /FlateDecode
>>
stream
xÚÍYYsãÈ
~÷¯ÐSBUÚ}ó6Ù#;ÊÖ&ãTª²³4EYÌR¢¤¢8¿>@)Ñcg㤦\eÝh4¾(¶ ðÇQbíaÔE±»¡üý
LÂZ/V*"¹ÓÈþ»»ÛïYpJ´æjq·Y0CS/¾»õOÙM_vËW4köáyh«]ÕWK®²,ÊÊ0\ç»ûu¾j¦ï?ß½÷ò$BjòAkaP¡ÕJyñ?}ÙõïIx~ïÊ6íï×ø&ξÏÛ²,JÜga%Ø äbűÖ8/ø6ßôg5À4ꪱò' D×%¬g¿ÛVÑÊ`RÛUI
fõ;Öbæ«@pJ] ªõÛè¿.-ÍÊûhM1¯×mÙywÝ|{7_9)ùBQK´ã2pþe¨?N9XøSfí¿öoûþðæööt:]Þo;òiw¬I^ã/·ÞÉÌ
Â
DÊÁE\P?J.FS¿·E÷°Çð¹
¡AëÍ¥¥Ò("(ÆÔÒËv`Ø#ÖT6â¹±Ä
ÜR[b³#_°±/8å#ªþö¾ëÛ¼è¯N
ÂÄT`¨²jNW.düÌe
Ò;D¤\ÒDfçP±ouÙþv©TÑ&¸Ìú¦¯Ê}^6Ç}ÑcÔú 6ÊXÐ%mæ2ÃÎ)Û<í±Ä¡meÛ?âá¼ÝÉÁJ>Ýv³ jYÀò*¸Ä@NðĵBD:bsfb´©º´ªi×@h&zà ^q ÑÆ
Áô wÜxhãaVc!LYÜê/³*C9jÿ_¶[BI¶{û¤ÉûªïYEÙr²;D)ZÆe;kh ¯ht*:h¡åXÍK¸±¡ÍÁû~ÿ¾D¼} À
#»f=ëË El§Oïuå¸*4eÙ»}=ìZæ-B9@ûõàóñ$)&/¿?AÆUe¿§:+àíØ>.µÊðR`î¯vWÛ¼¬ÇºüH)ßëðã2îÐ:oÃØgSKE¨2)¥êyÓu)ð¼*;m˶(qÛ©À«ðIüÇ) Ñv£èá ù ÓMÂÎ?ÍÞ# ¤)à
©Ø¾´È(`í÷e0¢ÈëÚÇ°Pý±².wÏYÉÔʹ/ÈL
èÉ*2hܹÀ(7Ü_F`LÈþ×õï-+eâ"jO__A¥çqP@ií±¤4cì}8Þwå§#DW@Áðe62HLÃyƦùØ@±äth pdßôh¡²m½£»c±E
´ï±ÖÆ#Ðu0©(ol4#®ÛQvyoZÁÈ}8W¨j´ÍjÆc) KÙB--¾ùvuµYyéTÕ
`ö¾ÝAWöÝW}P¢}<ôÍC¶KÔLÇMËv*ö.(
±{lMç_lÔÑßxihÚ=õ¥õMxo}]í#_Ñ´c&_<®tN}ñ½vn-1%QظNÌ^ò
1>ܽ]ÑV÷eí]¤BDz]Z6NîdüËû2Ê¿ûøF.lT=ìWÞe_sguUä#I.¶»
ha^wîâx×a¸PÆ'ãðOq·0ÉÂÉ-)á&ýÍ`ñ4æ ôF¨@ä*jÍ4ZÃã¸JÚd¶LÚFe³Ñ^$ð(A°()úGÈèÇíK¬%ó>pE£gþîÝï>|?L+ÍTÊÐÐ
È5Ïê¼ë
§Oô¶*=öÍra´EÛÅÅ¡ÔWÝ Ây'ú$~:%âÇ»¸~sÁÍàO{Ö)J>m¡«H4Sá 5Æ´ÿ*Û&^ E¾¨Õ]¨ûÈuj+¼Pç"I ±ÏãîÕàçs¾ÛÁXn@_9xÁ5'¥r¨õãçÄé§ÅÙÓcqæêÛ¥ÐÑFÅþÓ§~¦õ
]¼¿¡D8«' sØLì\_ß|¸ùÓècO¹ËûØcQAß6( ·xÆ/érxÖ/îóâôXÿ¯ÅM´ÏÁ"N¾®±êuÕ¯«y]íìë
{]cgzò×ÈcOËû5æ2~õáZ "
Ã^0Ï?Dë)`yæÅ9d^äuýAºLaìkú%|Ö/FCÇ
îøeø@ lß\]éW:¿7ùùguf:r¸¢M4öÄiÎWÌÜvÿ3ÈÓendstream
endobj
102 0 obj <<
/Type /Page
/Contents 104 0 R
/Resources 103 0 R
/MediaBox [0 0 612 792]
/Parent 138 0 R
/Annots [ 110 0 R ]
>> endobj
110 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[0 1 1]
/Rect [133.9479 505.3726 476.3037 516.9213]
/Subtype/Link/A<>
>> endobj
105 0 obj <<
/D [102 0 R /XYZ 110.8543 691.1083 null]
>> endobj
106 0 obj <<
/D [102 0 R /XYZ 110.8543 666.2017 null]
>> endobj
6 0 obj <<
/D [102 0 R /XYZ 110.8543 296.2927 null]
>> endobj
103 0 obj <<
/Font << /F97 109 0 R /F100 113 0 R /F101 116 0 R /F102 119 0 R /F105 122 0 R /F103 125 0 R /F43 128 0 R /F114 131 0 R /F115 134 0 R /F104 137 0 R >>
/ProcSet [ /PDF /Text ]
>> endobj
141 0 obj <<
/Length 2949
/Filter /FlateDecode
>>
stream
xÚÍZ_sã¸
ϧð£=]óøâÝôåz½v¯ítzÍtgº»$jmÉ+ÉË·/@²d+±sõt:y0I À`Äà ÁYf´Y/à¶7|ö ÿp#"Ê24|êãR{Ïwj¶òøþöæ½7FÎnï¡©ÞάÑLjkg·ëó÷÷¥tzþTÄߦìb³{¦hwŪ+ÒÌ¿.Çñ¢ê²h©óX4q8ooúæGÁÕh}ïu2±qá_DóÖj¤1Lñl¶Ìy¥YIdãX&AüÕ'nøä¢ùLÄËDaƼò2üvj5!AÚG¸è!aÞ9I¾â¢U>m^¾ÌÄôL`óo§~& õbf ñN$ãxÕѶûÕªhÛáÏ~c»ê9³uyt÷pÄÌÔ´1pZ\tº÷æøHdi/.Óoõ@`±åÎCªÕ"
úÄù´ÀôÚë³óv.6Ì×-¸e¯Ú%4µqÿ#»´W²Kv 6hø