%PDF-1.4 5 0 obj << /S /GoTo /D (section.1) >> endobj 8 0 obj (Motivation) endobj 9 0 obj << /S /GoTo /D (section.2) >> endobj 12 0 obj (Finite abelian groups) endobj 13 0 obj << /S /GoTo /D (subsection.2.1) >> endobj 16 0 obj (Smith canonical form) endobj 17 0 obj << /S /GoTo /D (subsection.2.2) >> endobj 20 0 obj (Primary canonical form) endobj 21 0 obj << /S /GoTo /D (section.3) >> endobj 24 0 obj (M\366bius inversion) endobj 25 0 obj << /S /GoTo /D (section.4) >> endobj 28 0 obj (The units modulo n) endobj 29 0 obj << /S /GoTo /D (section.5) >> endobj 32 0 obj (Carmichael's lambda-function) endobj 33 0 obj << /S /GoTo /D (subsection.5.1) >> endobj 36 0 obj (Denominators of Bernoulli numbers) endobj 37 0 obj << /S /GoTo /D (subsection.5.2) >> endobj 40 0 obj (p-rank and p-exponent) endobj 41 0 obj << /S /GoTo /D (section.6) >> endobj 44 0 obj (Primitive lambda-roots) endobj 45 0 obj << /S /GoTo /D (subsection.6.1) >> endobj 48 0 obj (Another formula) endobj 49 0 obj << /S /GoTo /D (subsection.6.2) >> endobj 52 0 obj (Fraternities) endobj 53 0 obj << /S /GoTo /D (section.7) >> endobj 56 0 obj (Some special structures for the units) endobj 57 0 obj << /S /GoTo /D (section.8) >> endobj 60 0 obj (Negating and non-negating PLRs) endobj 61 0 obj << /S /GoTo /D (subsection.8.1) >> endobj 64 0 obj (A refined canonical form) endobj 65 0 obj << /S /GoTo /D (subsection.8.2) >> endobj 68 0 obj (Generators differing by 1) endobj 69 0 obj << /S /GoTo /D (subsection.8.3) >> endobj 72 0 obj (Existence of negating PLRs) endobj 73 0 obj << /S /GoTo /D (section.9) >> endobj 76 0 obj (Inward and outward PLRs) endobj 77 0 obj << /S /GoTo /D (section.10) >> endobj 80 0 obj (Perfect, imperfect and aberrant PLRs) endobj 81 0 obj << /S /GoTo /D (subsection.10.1) >> endobj 84 0 obj (Deeply aberrant and nearly perfect PLRs) endobj 85 0 obj << /S /GoTo /D (section.11) >> endobj 88 0 obj (Further properties of PLRs) endobj 89 0 obj << /S /GoTo /D (section.12) >> endobj 92 0 obj (Tables of PLRs) endobj 93 0 obj << /S /GoTo /D (subsection.12.1) >> endobj 96 0 obj (PLRs for composite odd multiples of 3) endobj 97 0 obj << /S /GoTo /D (subsection.12.2) >> endobj 100 0 obj (PLRs for composite odd non-multiples of 3) endobj 101 0 obj << /S /GoTo /D [102 0 R /FitH ] >> endobj 104 0 obj << /Length 2079 /Filter /FlateDecode >> stream xÚÍYYsãÈ ~÷¯ÐSBU­Ú}ó6Ù#;“ÊÖ&ãTª²³4EYÌR¢†¤¢8¿>@)Ñcg㤦\e‚Ýh4€¾(¶ ðÇŒQb•íaÔŠE±»¡‹˜üý ‹LÂZ‚œ/Vš*"¹ÓÈþ»»›ÛïœYpJ´æjq·Y0C‰SŠ/¾»õOÙM_vËW4köáyh«]ÕWK®²,™ÊÊ0\ç»ûu¾j›¦ï–?ß½÷ò™$BjŽòAkaP¡ˆÕJyñ?–}Ù†õïIx~ïÊ6í•ïׁø&ξÏÛ²,JÜga%Ø äbűÖ8/ø›6ßôg5À4ꪱò' D×%¬g¿ÛVÑÊ`RÛUI…fõ;֏bæ«@pJ] ªõÛè•¿.-ÍÊûhM1›¯×mÙywÝ|{7_9)ùBQK´ã2œp˜þe‘¨?ŒN9­X—øSf”Ží¿–öoûþðæööt:‘]Þo;òiw¬I^ã/·ÞÉÌ Â DÊŠÁEŽ\P?Ž”J.FS‡¿·E÷°Çð¹ ¡AëÍ¥¥Ò("(ÆÔÒËvš`ƒØ#ÖT6â¹±Ä ÜR[b³#_°±/8„Žå#ªþö¾ëÛ¼è¯N…ÂÄ—T`¨²jNW.ˆdü‰Ìe ҍ;šD¤\’ÒD‚fç­P±ouÙþv©TÑ&¸Ìú¦¯Ê}^6Ç}ÑcÔú ‡”Ÿ„œ6ÊXÐ%mæ2ÃÎ)Û<큱ŠÄ¡meÛ?⛂἟ÝÉÁJ>Ýv³ jY“Àò‘*š¸Ä˜@NðĵBD:bsfb´‘©º´ªi×@h&zšÃ ^q ÑÆ…Áô‚ wÜ‹xh›ãaVcŽ!LYÜê/³*Cœ9jÿ_¶[B™I¶{û¤ÉŽûªïYEÙr²;D)“ZÆe;kh ¯ht*€:†h¡åXÍK¸†Œ±¡ÍÁû~ÿ¾D¼} À #»f=ëË El§Oïuå¸*4eÙ»}=ìZæ-B9’@ûõàžóñ$)&/Ž¿?AÆUe¿§:+àíØ>.µÊðR`î¯vWÛ¼¬ÇºüH)ß—ëðšã2îÐ:oÃØgS—KE¨2)¥êyӝu)ð¼*;m˶œ•(qšÛ©À«ðIüŸÇ) Ñv”£è•á ù ÓœMÂÎ?ÍÞ# ¤)žàœ’ ©Ø¾„´œÈ(`í÷e0¢ÈëÚÇŠ°Pý„±².wÏYÉԓʹ/ÈL èÉŒœ*Ÿ2h€‡Ü¹À”†(7Ü_F`ŽLȃþ×õïœ-+eâ"jŸO__A¥çœqP@i틱¤4cìœ}8Þwå§#DW@Áðe62HLÔyšÆ¦ùØ@±äth pdßôh¡²m½£»c±E ´ïƒ±ÖƉ#Ðu0‘Š‹©(ol€4€#®†ÛQvyoZÁÈ}™8W¨j´šÍjÆc•‚)› KÙB-‰-¾ùv‰uµYy•éTÕ `ö¾ˆÝAWöÝW}PŒ¢}<ôÍC›¶KÔLÇM€Ëv*ö.( ±{lMç_lÔÑßxihÚ=õ¥õMxoŽ}]í#_ŸÑ´‘c&_<®tN}ñ½vn-1–%QظNÌ^ò…1>ܽ]ÑV÷eíš]¤BDz]ž­›ƒZ†6NîšdüËû2Ê¿ŒûøF.lT=ìWÞe_sg›uUä#I.¶» hža^„wîâxš×až‰¸PÆ'ã‰ðO™q·0ÉÂÉ-)á–&ˆýÍ“`‘ñ4æ ôF¨@ä*jÍ4ZÃ㸎JÚd¶LÚFe³Ñ^$ð(A°()úGÈèÇíK¬%ó‡>pE£˜gþîÝï>|?L+̓Tʉ‘ÐÐ ˜È5Ïê¼ë…§‡Oô¶*=ö‚Íra´EÛÅÅ¡˜‘ÔWÝ Ây'ú$~:œ%âÇ»¸~sÁŽÍàO{Ö)J>m¡«H4Sဠ”5Ɛ´ÿ*Û&^ Ež¾¨Õ]¨ûÈuj+¼Pç"‹I ±ÏãîÕàçs¾žÛÁXn@_9xÁ5'¥r¨õãçÄé§ÅÙ—‰ÓcqæêÛŽ¥ÐÑFÅþÓ§›Ÿ~¦‹õ ]¼¿¡D8«' ˜sØLì™\_ß|¸ùÓècO¹ËœûØcQA‹ß†6( ·xÆ/érxÖ/îóâôXÿ¯ÅM´ÏÁ"N¾®±êuÕ¯«y]íìë…{]c•g‰„zò×ÈcOËû5æ2~õáZ " Ã^0‘φ?Dë)`˜yæÅ9d^äuýAºLaìkú%‰|Ö/FCÇ î˜øeø@ Ÿlß\]éW:‹¿7ˆùù‰guf”:‚r¸¢M’4€öÄi΁WÌÜvÿ3ȐÓendstream endobj 102 0 obj << /Type /Page /Contents 104 0 R /Resources 103 0 R /MediaBox [0 0 612 792] /Parent 138 0 R /Annots [ 110 0 R ] >> endobj 110 0 obj << /Type /Annot /Border[0 0 0]/H/I/C[0 1 1] /Rect [133.9479 505.3726 476.3037 516.9213] /Subtype/Link/A<> >> endobj 105 0 obj << /D [102 0 R /XYZ 110.8543 691.1083 null] >> endobj 106 0 obj << /D [102 0 R /XYZ 110.8543 666.2017 null] >> endobj 6 0 obj << /D [102 0 R /XYZ 110.8543 296.2927 null] >> endobj 103 0 obj << /Font << /F97 109 0 R /F100 113 0 R /F101 116 0 R /F102 119 0 R /F105 122 0 R /F103 125 0 R /F43 128 0 R /F114 131 0 R /F115 134 0 R /F104 137 0 R >> /ProcSet [ /PDF /Text ] >> endobj 141 0 obj << /Length 2949 /Filter /FlateDecode >> stream xÚÍZ_s㸠ϧð£=]óøŸâÝôåz½v¯ítzÍtgº»Š­$jmÉ+ɛ˷/@²d+±sõt:y0I ‚À`Čߘ ÁYf´šY/˜à™š­¶7|ö ÿp#"‘Ê2†4|êãR{Ï”wj¶òøþö曽ƒ˜7FÎnï¡©™ÞάÑLjkg·ëó÷÷‹¥tzþTÄߦìb³{Œ¦hwŪ+ÒÌ¿.„™Çñ¢êš²h©óX4q8oŸoúæGÁÕh}ï˜u2±qá_DóÖj¤1Lñl¶Ìy¥YIdã­X&AüÕ'nø䢊ùLÄËDaƼ„ò2’üvj5!A­ÚG‘¸è!aÞ9I¾›â¢™U>m^¾ÌÄôL–`óo§~&Š Ÿõbf ñN$ãx’ÕÑ™¶ûÕªhÛá™Ï~c»ê9³uyt÷pÄÌšÔ´1pZ\tº÷æøHd’i/“.Óoõ@`±åŽÎCªÕ"› –úÄù´‰ÀôÚ볂‹óv‰œ.6Ì×-¸e¯Ú%4µqÿ#»´W²K‡v 6hø