複素関数の基礎
初学者が学び易いように記載内容は根幹に絞り、枝葉への言及は最小限に留めているが、たとえば交流回路に対するオームの法則、楕円関数、リーマン面などの例・余談を盛り込むことで、複素関数論の広がりや歴史も感じることができる。
本書では、十分に一般的仮定のもとで定理を述べ、厳密な証明を与えている。一方で、特に複素関数論を応用の立場から学ぶ読者に向けて、要点を手早く習得できる「近道」も随所に用意しており、目的に応じてカスタマイズできるよう構成している。
1.1 複素数・複素平面
1.2 複素数列
1.3 関数の極限と連続性
1.4 級数
1.5 べき級数
1.6 複素平面の位相
第2章 初等関数
2.1 指数関数
2.2 双曲・三角関数
2.3 偏角・対数の主枝
2.4 べき乗の主枝
2.5 (★)逆三角関数
2.6 (★)初等関数のリーマン面I
第3章 複素微分
3.1 準備:複素変数関数の偏微分
3.2 複素微分の定義と基本的性質
3.3 逆関数の複素微分
3.4 べき級数の複素微分
3.5 (★)一般二項展開
3.6 コーシー・リーマン方程式I
3.7 (★)コーシー・リーマン方程式II
第4章 コーシーの定理
4.1 曲線に関する用語
4.2 複素線積分
4.3 初等的コーシーの定理
4.4 初等的コーシーの定理を応用した計算例
4.5 原始関数
4.6 星形領域に対するコーシーの定理
4.7 (★)命題4.6.2の証明
4.8 星形領域に対するコーシーの定理を応用した計算例
第5章 正則関数の基本性質
5.1 コーシーの積分表示とテイラー展開
5.2 (★)定理5.1.1証明中の補題の証明
5.3 リューヴィルの定理
5.4 一致の定理
5.5 (★)モレラの定理
5.6 (★)正接・双曲正接のべき級数とベルヌーイ数
5.7 (★)無限積
第6章 孤立特異点
6.1 孤立特異点と留数
6.2 留数定理
6.3 留数定理を応用した計算例
6.4 偏角原理・ルーシェの定理
6.5 (★)開写像定理・逆関数定理・最大値原理
6.6 (★)孤立特異点続論
6.7 (★)ローラン展開
6.8 (★)初等関数のリーマン面II
第7章 (★)一般化されたコーシーの定理
7.1 回転数
7.2 命題7.1.7の証明
7.3 一般化されたコーシーの定理
7.4 一般化された留数定理
7.5 単連結領域に対するコーシーの定理
問の略解