%PDF-1.4
%ÐÔÅØ
5 0 obj
<< /S /GoTo /D (TitleAnchor.0) >>
endobj
8 0 obj
(Title)
endobj
9 0 obj
<< /S /GoTo /D (ContentsAnchor.0) >>
endobj
12 0 obj
(Contents)
endobj
13 0 obj
<< /S /GoTo /D (dummychapter.2) >>
endobj
16 0 obj
(Preface)
endobj
17 0 obj
<< /S /GoTo /D (dummychapter.3) >>
endobj
20 0 obj
(Preliminaries)
endobj
21 0 obj
<< /S /GoTo /D (chapter.1) >>
endobj
24 0 obj
(1 Basic properties of the integers)
endobj
25 0 obj
<< /S /GoTo /D (section.1.1) >>
endobj
28 0 obj
(1.1 Divisibility and primality)
endobj
29 0 obj
<< /S /GoTo /D (section.1.2) >>
endobj
32 0 obj
(1.2 Ideals and greatest common divisors)
endobj
33 0 obj
<< /S /GoTo /D (section.1.3) >>
endobj
36 0 obj
(1.3 Some consequences of unique factorization)
endobj
37 0 obj
<< /S /GoTo /D (chapter.2) >>
endobj
40 0 obj
(2 Congruences)
endobj
41 0 obj
<< /S /GoTo /D (section.2.1) >>
endobj
44 0 obj
(2.1 Equivalence relations)
endobj
45 0 obj
<< /S /GoTo /D (section.2.2) >>
endobj
48 0 obj
(2.2 Definitions and basic properties of congruences)
endobj
49 0 obj
<< /S /GoTo /D (section.2.3) >>
endobj
52 0 obj
(2.3 Solving linear congruences)
endobj
53 0 obj
<< /S /GoTo /D (section.2.4) >>
endobj
56 0 obj
(2.4 The Chinese remainder theorem)
endobj
57 0 obj
<< /S /GoTo /D (section.2.5) >>
endobj
60 0 obj
(2.5 Residue classes)
endobj
61 0 obj
<< /S /GoTo /D (section.2.6) >>
endobj
64 0 obj
(2.6 Euler's phi function)
endobj
65 0 obj
<< /S /GoTo /D (section.2.7) >>
endobj
68 0 obj
(2.7 Euler's theorem and Fermat's little theorem)
endobj
69 0 obj
<< /S /GoTo /D (section.2.8) >>
endobj
72 0 obj
(2.8 Quadratic residues)
endobj
73 0 obj
<< /S /GoTo /D (section.2.9) >>
endobj
76 0 obj
(2.9 Summations over divisors)
endobj
77 0 obj
<< /S /GoTo /D (chapter.3) >>
endobj
80 0 obj
(3 Computing with large integers)
endobj
81 0 obj
<< /S /GoTo /D (section.3.1) >>
endobj
84 0 obj
(3.1 Asymptotic notation)
endobj
85 0 obj
<< /S /GoTo /D (section.3.2) >>
endobj
88 0 obj
(3.2 Machine models and complexity theory)
endobj
89 0 obj
<< /S /GoTo /D (section.3.3) >>
endobj
92 0 obj
(3.3 Basic integer arithmetic)
endobj
93 0 obj
<< /S /GoTo /D (section.3.4) >>
endobj
96 0 obj
(3.4 Computing in Zn)
endobj
97 0 obj
<< /S /GoTo /D (section.3.5) >>
endobj
100 0 obj
(3.5 Faster integer arithmetic \(*\))
endobj
101 0 obj
<< /S /GoTo /D (section.3.6) >>
endobj
104 0 obj
(3.6 Notes)
endobj
105 0 obj
<< /S /GoTo /D (chapter.4) >>
endobj
108 0 obj
(4 Euclid's algorithm)
endobj
109 0 obj
<< /S /GoTo /D (section.4.1) >>
endobj
112 0 obj
(4.1 The basic Euclidean algorithm)
endobj
113 0 obj
<< /S /GoTo /D (section.4.2) >>
endobj
116 0 obj
(4.2 The extended Euclidean algorithm)
endobj
117 0 obj
<< /S /GoTo /D (section.4.3) >>
endobj
120 0 obj
(4.3 Computing modular inverses and Chinese remaindering)
endobj
121 0 obj
<< /S /GoTo /D (section.4.4) >>
endobj
124 0 obj
(4.4 Speeding up algorithms via modular computation)
endobj
125 0 obj
<< /S /GoTo /D (section.4.5) >>
endobj
128 0 obj
(4.5 An effective version of Fermat's two squares theorem)
endobj
129 0 obj
<< /S /GoTo /D (section.4.6) >>
endobj
132 0 obj
(4.6 Rational reconstruction and applications)
endobj
133 0 obj
<< /S /GoTo /D (section.4.7) >>
endobj
136 0 obj
(4.7 The RSA cryptosystem)
endobj
137 0 obj
<< /S /GoTo /D (section.4.8) >>
endobj
140 0 obj
(4.8 Notes)
endobj
141 0 obj
<< /S /GoTo /D (chapter.5) >>
endobj
144 0 obj
(5 The distribution of primes)
endobj
145 0 obj
<< /S /GoTo /D (section.5.1) >>
endobj
148 0 obj
(5.1 Chebyshev's theorem on the density of primes)
endobj
149 0 obj
<< /S /GoTo /D (section.5.2) >>
endobj
152 0 obj
(5.2 Bertrand's postulate)
endobj
153 0 obj
<< /S /GoTo /D (section.5.3) >>
endobj
156 0 obj
(5.3 Mertens' theorem)
endobj
157 0 obj
<< /S /GoTo /D (section.5.4) >>
endobj
160 0 obj
(5.4 The sieve of Eratosthenes)
endobj
161 0 obj
<< /S /GoTo /D (section.5.5) >>
endobj
164 0 obj
(5.5 The prime number theorem \203and beyond)
endobj
165 0 obj
<< /S /GoTo /D (section.5.6) >>
endobj
168 0 obj
(5.6 Notes)
endobj
169 0 obj
<< /S /GoTo /D (chapter.6) >>
endobj
172 0 obj
(6 Abelian groups)
endobj
173 0 obj
<< /S /GoTo /D (section.6.1) >>
endobj
176 0 obj
(6.1 Definitions, basic properties, and examples)
endobj
177 0 obj
<< /S /GoTo /D (section.6.2) >>
endobj
180 0 obj
(6.2 Subgroups)
endobj
181 0 obj
<< /S /GoTo /D (section.6.3) >>
endobj
184 0 obj
(6.3 Cosets and quotient groups)
endobj
185 0 obj
<< /S /GoTo /D (section.6.4) >>
endobj
188 0 obj
(6.4 Group homomorphisms and isomorphisms)
endobj
189 0 obj
<< /S /GoTo /D (section.6.5) >>
endobj
192 0 obj
(6.5 Cyclic groups)
endobj
193 0 obj
<< /S /GoTo /D (section.6.6) >>
endobj
196 0 obj
(6.6 The structure of finite abelian groups \(*\))
endobj
197 0 obj
<< /S /GoTo /D (chapter.7) >>
endobj
200 0 obj
(7 Rings)
endobj
201 0 obj
<< /S /GoTo /D (section.7.1) >>
endobj
204 0 obj
(7.1 Definitions, basic properties, and examples)
endobj
205 0 obj
<< /S /GoTo /D (section.7.2) >>
endobj
208 0 obj
(7.2 Polynomial rings)
endobj
209 0 obj
<< /S /GoTo /D (section.7.3) >>
endobj
212 0 obj
(7.3 Ideals and quotient rings)
endobj
213 0 obj
<< /S /GoTo /D (section.7.4) >>
endobj
216 0 obj
(7.4 Ring homomorphisms and isomorphisms)
endobj
217 0 obj
<< /S /GoTo /D (section.7.5) >>
endobj
220 0 obj
(7.5 The structure of Zn*)
endobj
221 0 obj
<< /S /GoTo /D (chapter.8) >>
endobj
224 0 obj
(8 Finite and discrete probability distributions)
endobj
225 0 obj
<< /S /GoTo /D (section.8.1) >>
endobj
228 0 obj
(8.1 Basic definitions)
endobj
229 0 obj
<< /S /GoTo /D (section.8.2) >>
endobj
232 0 obj
(8.2 Conditional probability and independence)
endobj
233 0 obj
<< /S /GoTo /D (section.8.3) >>
endobj
236 0 obj
(8.3 Random variables)
endobj
237 0 obj
<< /S /GoTo /D (section.8.4) >>
endobj
240 0 obj
(8.4 Expectation and variance)
endobj
241 0 obj
<< /S /GoTo /D (section.8.5) >>
endobj
244 0 obj
(8.5 Some useful bounds)
endobj
245 0 obj
<< /S /GoTo /D (section.8.6) >>
endobj
248 0 obj
(8.6 Balls and bins)
endobj
249 0 obj
<< /S /GoTo /D (section.8.7) >>
endobj
252 0 obj
(8.7 Hash functions)
endobj
253 0 obj
<< /S /GoTo /D (section.8.8) >>
endobj
256 0 obj
(8.8 Statistical distance)
endobj
257 0 obj
<< /S /GoTo /D (section.8.9) >>
endobj
260 0 obj
(8.9 Measures of randomness and the leftover hash lemma \(*\))
endobj
261 0 obj
<< /S /GoTo /D (section.8.10) >>
endobj
264 0 obj
(8.10 Discrete probability distributions)
endobj
265 0 obj
<< /S /GoTo /D (section.8.11) >>
endobj
268 0 obj
(8.11 Notes)
endobj
269 0 obj
<< /S /GoTo /D (chapter.9) >>
endobj
272 0 obj
(9 Probabilistic algorithms)
endobj
273 0 obj
<< /S /GoTo /D (section.9.1) >>
endobj
276 0 obj
(9.1 Basic definitions)
endobj
277 0 obj
<< /S /GoTo /D (section.9.2) >>
endobj
280 0 obj
(9.2 Generating a random number from a given interval)
endobj
281 0 obj
<< /S /GoTo /D (section.9.3) >>
endobj
284 0 obj
(9.3 The generate and test paradigm)
endobj
285 0 obj
<< /S /GoTo /D (section.9.4) >>
endobj
288 0 obj
(9.4 Generating a random prime)
endobj
289 0 obj
<< /S /GoTo /D (section.9.5) >>
endobj
292 0 obj
(9.5 Generating a random non-increasing sequence)
endobj
293 0 obj
<< /S /GoTo /D (section.9.6) >>
endobj
296 0 obj
(9.6 Generating a random factored number)
endobj
297 0 obj
<< /S /GoTo /D (section.9.7) >>
endobj
300 0 obj
(9.7 Some complexity theory)
endobj
301 0 obj
<< /S /GoTo /D (section.9.8) >>
endobj
304 0 obj
(9.8 Notes)
endobj
305 0 obj
<< /S /GoTo /D (chapter.10) >>
endobj
308 0 obj
(10 Probabilistic primality testing)
endobj
309 0 obj
<< /S /GoTo /D (section.10.1) >>
endobj
312 0 obj
(10.1 Trial division)
endobj
313 0 obj
<< /S /GoTo /D (section.10.2) >>
endobj
316 0 obj
(10.2 The Miller--Rabin test)
endobj
317 0 obj
<< /S /GoTo /D (section.10.3) >>
endobj
320 0 obj
(10.3 Generating random primes using the Miller--Rabin test)
endobj
321 0 obj
<< /S /GoTo /D (section.10.4) >>
endobj
324 0 obj
(10.4 Factoring and computing Euler's phi function)
endobj
325 0 obj
<< /S /GoTo /D (section.10.5) >>
endobj
328 0 obj
(10.5 Notes)
endobj
329 0 obj
<< /S /GoTo /D (chapter.11) >>
endobj
332 0 obj
(11 Finding generators and discrete logarithms in Zp*)
endobj
333 0 obj
<< /S /GoTo /D (section.11.1) >>
endobj
336 0 obj
(11.1 Finding a generator for Zp*)
endobj
337 0 obj
<< /S /GoTo /D (section.11.2) >>
endobj
340 0 obj
(11.2 Computing discrete logarithms in Zp*)
endobj
341 0 obj
<< /S /GoTo /D (section.11.3) >>
endobj
344 0 obj
(11.3 The Diffie--Hellman key establishment protocol)
endobj
345 0 obj
<< /S /GoTo /D (section.11.4) >>
endobj
348 0 obj
(11.4 Notes)
endobj
349 0 obj
<< /S /GoTo /D (chapter.12) >>
endobj
352 0 obj
(12 Quadratic reciprocity and computing modular square roots)
endobj
353 0 obj
<< /S /GoTo /D (section.12.1) >>
endobj
356 0 obj
(12.1 The Legendre symbol)
endobj
357 0 obj
<< /S /GoTo /D (section.12.2) >>
endobj
360 0 obj
(12.2 The Jacobi symbol)
endobj
361 0 obj
<< /S /GoTo /D (section.12.3) >>
endobj
364 0 obj
(12.3 Computing the Jacobi symbol)
endobj
365 0 obj
<< /S /GoTo /D (section.12.4) >>
endobj
368 0 obj
(12.4 Testing quadratic residuosity)
endobj
369 0 obj
<< /S /GoTo /D (section.12.5) >>
endobj
372 0 obj
(12.5 Computing modular square roots)
endobj
373 0 obj
<< /S /GoTo /D (section.12.6) >>
endobj
376 0 obj
(12.6 The quadratic residuosity assumption)
endobj
377 0 obj
<< /S /GoTo /D (section.12.7) >>
endobj
380 0 obj
(12.7 Notes)
endobj
381 0 obj
<< /S /GoTo /D (chapter.13) >>
endobj
384 0 obj
(13 Modules and vector spaces)
endobj
385 0 obj
<< /S /GoTo /D (section.13.1) >>
endobj
388 0 obj
(13.1 Definitions, basic properties, and examples)
endobj
389 0 obj
<< /S /GoTo /D (section.13.2) >>
endobj
392 0 obj
(13.2 Submodules and quotient modules)
endobj
393 0 obj
<< /S /GoTo /D (section.13.3) >>
endobj
396 0 obj
(13.3 Module homomorphisms and isomorphisms)
endobj
397 0 obj
<< /S /GoTo /D (section.13.4) >>
endobj
400 0 obj
(13.4 Linear independence and bases)
endobj
401 0 obj
<< /S /GoTo /D (section.13.5) >>
endobj
404 0 obj
(13.5 Vector spaces and dimension)
endobj
405 0 obj
<< /S /GoTo /D (chapter.14) >>
endobj
408 0 obj
(14 Matrices)
endobj
409 0 obj
<< /S /GoTo /D (section.14.1) >>
endobj
412 0 obj
(14.1 Basic definitions and properties)
endobj
413 0 obj
<< /S /GoTo /D (section.14.2) >>
endobj
416 0 obj
(14.2 Matrices and linear maps)
endobj
417 0 obj
<< /S /GoTo /D (section.14.3) >>
endobj
420 0 obj
(14.3 The inverse of a matrix)
endobj
421 0 obj
<< /S /GoTo /D (section.14.4) >>
endobj
424 0 obj
(14.4 Gaussian elimination)
endobj
425 0 obj
<< /S /GoTo /D (section.14.5) >>
endobj
428 0 obj
(14.5 Applications of Gaussian elimination)
endobj
429 0 obj
<< /S /GoTo /D (section.14.6) >>
endobj
432 0 obj
(14.6 Notes)
endobj
433 0 obj
<< /S /GoTo /D (chapter.15) >>
endobj
436 0 obj
(15 Subexponential-time discrete logarithms and factoring)
endobj
437 0 obj
<< /S /GoTo /D (section.15.1) >>
endobj
440 0 obj
(15.1 Smooth numbers)
endobj
441 0 obj
<< /S /GoTo /D (section.15.2) >>
endobj
444 0 obj
(15.2 An algorithm for discrete logarithms)
endobj
445 0 obj
<< /S /GoTo /D (section.15.3) >>
endobj
448 0 obj
(15.3 An algorithm for factoring integers)
endobj
449 0 obj
<< /S /GoTo /D (section.15.4) >>
endobj
452 0 obj
(15.4 Practical improvements)
endobj
453 0 obj
<< /S /GoTo /D (section.15.5) >>
endobj
456 0 obj
(15.5 Notes)
endobj
457 0 obj
<< /S /GoTo /D (chapter.16) >>
endobj
460 0 obj
(16 More rings)
endobj
461 0 obj
<< /S /GoTo /D (section.16.1) >>
endobj
464 0 obj
(16.1 Algebras)
endobj
465 0 obj
<< /S /GoTo /D (section.16.2) >>
endobj
468 0 obj
(16.2 The field of fractions of an integral domain)
endobj
469 0 obj
<< /S /GoTo /D (section.16.3) >>
endobj
472 0 obj
(16.3 Unique factorization of polynomials)
endobj
473 0 obj
<< /S /GoTo /D (section.16.4) >>
endobj
476 0 obj
(16.4 Polynomial congruences)
endobj
477 0 obj
<< /S /GoTo /D (section.16.5) >>
endobj
480 0 obj
(16.5 Minimal polynomials)
endobj
481 0 obj
<< /S /GoTo /D (section.16.6) >>
endobj
484 0 obj
(16.6 General properties of extension fields)
endobj
485 0 obj
<< /S /GoTo /D (section.16.7) >>
endobj
488 0 obj
(16.7 Formal derivatives)
endobj
489 0 obj
<< /S /GoTo /D (section.16.8) >>
endobj
492 0 obj
(16.8 Formal power series and Laurent series)
endobj
493 0 obj
<< /S /GoTo /D (section.16.9) >>
endobj
496 0 obj
(16.9 Unique factorization domains \(*\))
endobj
497 0 obj
<< /S /GoTo /D (section.16.10) >>
endobj
500 0 obj
(16.10 Notes)
endobj
501 0 obj
<< /S /GoTo /D (chapter.17) >>
endobj
504 0 obj
(17 Polynomial arithmetic and applications)
endobj
505 0 obj
<< /S /GoTo /D (section.17.1) >>
endobj
508 0 obj
(17.1 Basic arithmetic)
endobj
509 0 obj
<< /S /GoTo /D (section.17.2) >>
endobj
512 0 obj
(17.2 Computing minimal polynomials in F[X]/\(f\) \(I\))
endobj
513 0 obj
<< /S /GoTo /D (section.17.3) >>
endobj
516 0 obj
(17.3 Euclid's algorithm)
endobj
517 0 obj
<< /S /GoTo /D (section.17.4) >>
endobj
520 0 obj
(17.4 Computing modular inverses and Chinese remaindering)
endobj
521 0 obj
<< /S /GoTo /D (section.17.5) >>
endobj
524 0 obj
(17.5 Rational function reconstruction and applications)
endobj
525 0 obj
<< /S /GoTo /D (section.17.6) >>
endobj
528 0 obj
(17.6 Faster polynomial arithmetic \(*\))
endobj
529 0 obj
<< /S /GoTo /D (section.17.7) >>
endobj
532 0 obj
(17.7 Notes)
endobj
533 0 obj
<< /S /GoTo /D (chapter.18) >>
endobj
536 0 obj
(18 Linearly generated sequences and applications)
endobj
537 0 obj
<< /S /GoTo /D (section.18.1) >>
endobj
540 0 obj
(18.1 Basic definitions and properties)
endobj
541 0 obj
<< /S /GoTo /D (section.18.2) >>
endobj
544 0 obj
(18.2 Computing minimal polynomials: a special case)
endobj
545 0 obj
<< /S /GoTo /D (section.18.3) >>
endobj
548 0 obj
(18.3 Computing minimal polynomials: a more general case)
endobj
549 0 obj
<< /S /GoTo /D (section.18.4) >>
endobj
552 0 obj
(18.4 Solving sparse linear systems)
endobj
553 0 obj
<< /S /GoTo /D (section.18.5) >>
endobj
556 0 obj
(18.5 Computing minimal polynomials in F[X]/\(f\) \(II\))
endobj
557 0 obj
<< /S /GoTo /D (section.18.6) >>
endobj
560 0 obj
(18.6 The algebra of linear transformations \(*\))
endobj
561 0 obj
<< /S /GoTo /D (section.18.7) >>
endobj
564 0 obj
(18.7 Notes)
endobj
565 0 obj
<< /S /GoTo /D (chapter.19) >>
endobj
568 0 obj
(19 Finite fields)
endobj
569 0 obj
<< /S /GoTo /D (section.19.1) >>
endobj
572 0 obj
(19.1 Preliminaries)
endobj
573 0 obj
<< /S /GoTo /D (section.19.2) >>
endobj
576 0 obj
(19.2 The existence of finite fields)
endobj
577 0 obj
<< /S /GoTo /D (section.19.3) >>
endobj
580 0 obj
(19.3 The subfield structure and uniqueness of finite fields)
endobj
581 0 obj
<< /S /GoTo /D (section.19.4) >>
endobj
584 0 obj
(19.4 Conjugates, norms and traces)
endobj
585 0 obj
<< /S /GoTo /D (chapter.20) >>
endobj
588 0 obj
(20 Algorithms for finite fields)
endobj
589 0 obj
<< /S /GoTo /D (section.20.1) >>
endobj
592 0 obj
(20.1 Tests for and constructing irreducible polynomials)
endobj
593 0 obj
<< /S /GoTo /D (section.20.2) >>
endobj
596 0 obj
(20.2 Computing minimal polynomials in F[X]/\(f\) \(III\))
endobj
597 0 obj
<< /S /GoTo /D (section.20.3) >>
endobj
600 0 obj
(20.3 Factoring polynomials: square-free decomposition)
endobj
601 0 obj
<< /S /GoTo /D (section.20.4) >>
endobj
604 0 obj
(20.4 Factoring polynomials: the Cantor--Zassenhaus algorithm)
endobj
605 0 obj
<< /S /GoTo /D (section.20.5) >>
endobj
608 0 obj
(20.5 Factoring polynomials: Berlekamp's algorithm)
endobj
609 0 obj
<< /S /GoTo /D (section.20.6) >>
endobj
612 0 obj
(20.6 Deterministic factorization algorithms \(*\))
endobj
613 0 obj
<< /S /GoTo /D (section.20.7) >>
endobj
616 0 obj
(20.7 Notes)
endobj
617 0 obj
<< /S /GoTo /D (chapter.21) >>
endobj
620 0 obj
(21 Deterministic primality testing)
endobj
621 0 obj
<< /S /GoTo /D (section.21.1) >>
endobj
624 0 obj
(21.1 The basic idea)
endobj
625 0 obj
<< /S /GoTo /D (section.21.2) >>
endobj
628 0 obj
(21.2 The algorithm and its analysis)
endobj
629 0 obj
<< /S /GoTo /D (section.21.3) >>
endobj
632 0 obj
(21.3 Notes)
endobj
633 0 obj
<< /S /GoTo /D (dummychapter.4) >>
endobj
636 0 obj
(Appendix: Some useful facts)
endobj
637 0 obj
<< /S /GoTo /D (dummychapter.5) >>
endobj
640 0 obj
(Bibliography)
endobj
641 0 obj
<< /S /GoTo /D (dummychapter.6) >>
endobj
644 0 obj
(Index of notation)
endobj
645 0 obj
<< /S /GoTo /D (dummychapter.7) >>
endobj
648 0 obj
(Index)
endobj
649 0 obj
<< /S /GoTo /D [650 0 R /Fit ] >>
endobj
652 0 obj <<
/Length 221
/Filter /FlateDecode
>>
stream
xÚu½N1û{-íâ]ÿ\ì2 @PÐ`¥KîH"%çÈø
ÞGP ªYfGß.ÁîúG¯Csug<ð½VÂ;hF3XëÐv /b)[eIÜÄãiÎ}ÞÇ©?TëaÊ)ó¦xÕɱêÓ|\©Îa7Æô)ßÂ#°Öh¡U=sm李Æí¸N}ÉU*Þ*TÙwÐ:U·^ÉlÙdf1¦õíü[EèÉs©êÐ[®btærßJv$ö/¼Ï»8ÊîÝæ-RÊ
endstream
endobj
650 0 obj <<
/Type /Page
/Contents 652 0 R
/Resources 651 0 R
/MediaBox [0 0 432 648]
/Parent 656 0 R
>> endobj
653 0 obj <<
/D [650 0 R /XYZ 36.672 607.38 null]
>> endobj
654 0 obj <<
/D [650 0 R /XYZ 36.672 597.417 null]
>> endobj
6 0 obj <<
/D [650 0 R /XYZ 36.672 597.417 null]
>> endobj
651 0 obj <<
/Font << /F49 655 0 R >>
/ProcSet [ /PDF /Text ]
>> endobj
659 0 obj <<
/Length 19
/Filter /FlateDecode
>>
stream
xÚ3PHW0Ppç2ÀA c(á
endstream
endobj
658 0 obj <<
/Type /Page
/Contents 659 0 R
/Resources 657 0 R
/MediaBox [0 0 432 648]
/Parent 656 0 R
>> endobj
660 0 obj <<
/D [658 0 R /XYZ 36.672 607.38 null]
>> endobj
657 0 obj <<
/ProcSet [ /PDF ]
>> endobj
663 0 obj <<
/Length 398
/Filter /FlateDecode
>>
stream
xÚmRÁnÛ0½ç+tÅíØn°Û°uÀÐC1x§uÅfm!²rüý(SézØä{Oä(%F¡Ä·Jñs·ûx8BåGu,D÷,ª&oÚRÔwM~¨ïD7_²fû²häãû´rðý:÷Þm27eµ¼^`±Æñae%µXê°jÖWFÎJ%_ÌHÇtHl¿+Lsº2Ù[Ó÷Ùïî;Ýb_TùñвSãF´ÆÄXPðÌÑE[Ë* Æ»Yg½å?«~G±gjvÑ#p;·Î'Xð&@æ_ÁZæoÈÏ$zo0=åÖ³ª
ÙOú`EùEè£F ã8Ò}©OóÏÅ-ÐJðm)gÛÖbòb +kò» Áɯvø¯QîR)9¼ØmYThÖÄÞ1Ãc|¢-¼?Ïz9#äP[ë·á±,¨ëBwMTßb:¦¦÷I(¯ô@GÏoÿø¿v»¿ùmÇ
endstream
endobj
662 0 obj <<
/Type /Page
/Contents 663 0 R
/Resources 661 0 R
/MediaBox [0 0 432 648]
/Parent 656 0 R
>> endobj
664 0 obj <<
/D [662 0 R /XYZ 36.672 607.38 null]
>> endobj
661 0 obj <<
/Font << /F49 655 0 R >>
/ProcSet [ /PDF /Text ]
>> endobj
669 0 obj <<
/Length 1111
/Filter /FlateDecode
>>
stream
xÚ
VÝã4ß¿"tuç!ı°½Cã!MÝÖº4®dïúß3ãq²I7,/±=É|ý~3ãààçá×vÛ§¤"ÁKQFÁîÄÏr¤EÆ´vàoöh®a$ØÍêÓ¹72ìL#ÚI!
Úío´~3ÁtÝKç?Îf¸ÿì~Ý>¥éÜWI.òBqn¾
7IÆæ÷*ñVõßæ2Êͨ
@ÝYy7ÅÂMÉSøÄ{Qª{&)3®×')@ß?QÊí´i!8fæ«dýYw$ùèûN£ô »Þê}(zu ¥¡=(Kï{6Ê^¼NÕhSö Ãõà¶üB°Á&Kyç AÌË$§ +BúѪª×¡L}Ô^j.²FתíðM³O"á¾|ß¿
7¿µuÕÀéGeɬ·sÒX1ûcêj\Xò\kÉKQ¬
Â58ÂdG«zCkíË.ÌRöD²¸ÃÔh¨ o¯MuóV ½³·H;¾ÝyÎ)b*h:!KÏ0ìfÃi$Ñ}âA>¦1ÑÝHä8t.ÑÙ>eb^obÏüNwY«YÄeµú-ú¿ïÖÓ«â6ÐÔº:UCÛ¶¶
Âço¾ñþ¡yû xjW