Sequence Machine

Mathematical conjectures on top of 1308117 machine generated integer and decimal sequences.

Found 1 matches.

A094591

a(0) = 1; a(n) = n + (largest element of {a} <= n). A094591

1, 2, 4, 5, 8, 10, 11, 12, 16, 17, 20, 22, 24, 25, 26, 27, 32, 34, 35, 36, 40, 41, 44, 45, 48, 50, 52, 54, 55, 56, 57, 58, 64, 65, 68, 70, 72, 73, 74, 75, 80, 82, 83, 84, 88, 90, 91, 92, 96, 97, 100, 101, 104, 105, 108, 110, 112, 114, 116, 117, 118, 119, 120, 121, 128, 130, 131, 132, 136, 137, 140, 141, 144, 146, 148, 150, 151, 152, 153, 154, 160, 161, 164, 166, 168, 169, 170, 171, 176, 177, 180, 182, 184, 185, 186, 187, 192, 194, 195, 196, 200, 202, 203, 204, 208, 210, 211, 212, 216, 217, 220, 221, 224, 225, 228, 229, 232, 234, 236, 238, 240, 242, 243, 244, 245, 246, 247, 248, 256, 257, 260, 262, 264, 265, 266, 267, 272, 274, 275, 276, 280, 282, 283, 284, 288, 289, 292, 293, 296, 297, 300, 302, 304, 306, 308, 309, 310, 311, 312, 313, 320, 322, 323, 324, 328, 329, 332, 333, 336, 338, 340, 342, 343, 344, 345, 346, 352, 354, 355, 356, 360, 361, 364, 365, 368, 370, 372, 374, 375, 376, 377, 378, 384, 385, 388, 390, 392, 393, 394, 395, 400, 401, 404, 406, 408, 409, 410, 411, 416, 417, 420, 422, 424, 425, 426, 427, 432, 434, 435, 436, 440, 442, 443, 444, 448, 450, 451, 452, 456, 458, 459, 460, 464, 465, 468, 469, 472, 473, 476, 477, 480, 481, 484, 486, 488, 490, 492, 494, 496, 497, 498, 499, 500, 501, 502, 503, 512, 514, 515, 516, 520, 521, 524, 525, 528, 530, 532, 534, 535, 536, 537, 538, 544, 545, 548, 550, 552, 553, 554, 555, 560, 561, 564, 566, 568, 569, 570, 571, 576, 578, 579, 580, 584, 586, 587, 588, 592, 594, 595, 596, 600, 601, 604, 605, 608, 609, 612, 613, 616, 618, 620, 622, 624, 626, 627, 628, 629, 630, 631, 632, 640, 641, 644, 646, 648, 649, 650, 651, 656, 658, 659, 660, 664, 666, 667, 668, 672, 673, 676, 677, 680, 681, 684, 686, 688, 690, 692, 693, 694, 695, 696, 697, 704, 705, 708, 710, 712, 713, 714, 715, 720, 722, 723, 724, 728, 730, 731, 732, 736, 737, 740, 741, 744, 745, 748, 750, 752, 754, 756, 757, 758, 759, 760, 761, 768, 770, 771, 772, 776, 777, 780, 781, 784, 786, 788, 790, 791, 792, 793, 794, 800, 802, 803, 804, 808, 809, 812, 813, 816, 818, 820, 822, 823, 824, 825, 826, 832, 834, 835, 836, 840, 841, 844, 845, 848, 850, 852, 854, 855, 856, 857, 858, 864, 865, 868, 870, 872, 873, 874, 875, 880, 881, 884, 886, 888, 889, 890, 891, 896, 897, 900, 902, 904, 905, 906, 907, 912, 913, 916, 918, 920, 921, 922, 923, 928, 930, 931, 932, 936, 938, 939, 940, 944, 946, 947, 948, 952, 954, 955, 956, 960, 962, 963, 964, 968, 969, 972, 973, 976, 977, 980, 981, 984, 985, 988, 989, 992, 994, 996, 998,

integer, strictly-monotonic, +

a(n)=A272729(n)+a(n-1)
a(0)=1
10000 terms &check;
a(n)=[A272729(A000007(n)+n)]
10000 terms &check;
a(n)=[A272729(A255308(2*n+1)+n)]
10000 terms &check;
a(n)=and(-A272729(n+1), [A272729(n+1)])
10000 terms &check;
a(n)=A359807(A037988(n))+1
5000 terms &check;
a(n)=lt[A272729(2*n+1), A272729(2*(n+1))]+1
2501 terms &check;
a(n)=A008619(eq[0, A272728(n+1)])
2049 terms &check;
a(n)=record[A008619(gcd(n, A272728(n+1)))]
2049 terms &check;
a(n)=record[(1-A272728(n+1))*A008619(n)]
2049 terms &check;
a(n)=record[(n+1)/A008619(A272728(2*n+1))]
2049 terms &check;
a(n)=[A272729(A002260([n+2]-1))]
149 terms &check;
Reference

Charts

Terms

nA094591(n)Match
01
12
24
35
48
510
611
712
816
917
1020
1122
1224
1325
1426
1527
1632
1734
1835
1936
2040
2141
2244
2345
2448
2550
2652
2754
2855
2956
3057
3158
3264
3365
3468
3570
3672
3773
3874
3975
4080
4182
4283
4384
4488
4590
4691
4792
4896
4997
50100
51101
52104
53105
54108
55110
56112
57114
58116
59117
60118
61119
62120
63121
64128
65130
66131
67132
68136
69137
70140
71141
72144
73146
74148
75150
76151
77152
78153
79154
80160
81161
82164
83166
84168
85169
86170
87171
88176
89177
90180
91182
92184
93185
94186
95187
96192
97194
98195
99196
100200
101202
102203
103204
104208
105210
106211
107212
108216
109217
110220
111221
112224
113225
114228
115229
116232
117234
118236
119238
120240
121242
122243
123244
124245
125246
126247
127248
128256
129257
130260
131262
132264
133265
134266
135267
136272
137274
138275
139276
140280
141282
142283
143284
144288
145289
146292
147293
148296
149297
150300
151302
152304
153306
154308
155309
156310
157311
158312
159313
160320
161322
162323
163324
164328
165329
166332
167333
168336
169338
170340
171342
172343
173344
174345
175346
176352
177354
178355
179356
180360
181361
182364
183365
184368
185370
186372
187374
188375
189376
190377
191378
192384
193385
194388
195390
196392
197393
198394
199395
200400
201401
202404
203406
204408
205409
206410
207411
208416
209417
210420
211422
212424
213425
214426
215427
216432
217434
218435
219436
220440
221442
222443
223444
224448
225450
226451
227452
228456
229458
230459
231460
232464
233465
234468
235469
236472
237473
238476
239477
240480
241481
242484
243486
244488
245490
246492
247494
248496
249497
250498
251499
252500
253501
254502
255503
256512
257514
258515
259516
260520
261521
262524
263525
264528
265530
266532
267534
268535
269536
270537
271538
272544
273545
274548
275550
276552
277553
278554
279555
280560
281561
282564
283566
284568
285569
286570
287571
288576
289578
290579
291580
292584
293586
294587
295588
296592
297594
298595
299596
300600
301601
302604
303605
304608
305609
306612
307613
308616
309618
310620
311622
312624
313626
314627
315628
316629
317630
318631
319632
320640
321641
322644
323646
324648
325649
326650
327651
328656
329658
330659
331660
332664
333666
334667
335668
336672
337673
338676
339677
340680
341681
342684
343686
344688
345690
346692
347693
348694
349695
350696
351697
352704
353705
354708
355710
356712
357713
358714
359715
360720
361722
362723
363724
364728
365730
366731
367732
368736
369737
370740
371741
372744
373745
374748
375750
376752
377754
378756
379757
380758
381759
382760
383761
384768
385770
386771
387772
388776
389777
390780
391781
392784
393786
394788
395790
396791
397792
398793
399794
400800
401802
402803
403804
404808
405809
406812
407813
408816
409818
410820
411822
412823
413824
414825
415826
416832
417834
418835
419836
420840
421841
422844
423845
424848
425850
426852
427854
428855
429856
430857
431858
432864
433865
434868
435870
436872
437873
438874
439875
440880
441881
442884
443886
444888
445889
446890
447891
448896
449897
450900
451902
452904
453905
454906
455907
456912
457913
458916
459918
460920
461921
462922
463923
464928
465930
466931
467932
468936
469938
470939
471940
472944
473946
474947
475948
476952
477954
478955
479956
480960
481962
482963
483964
484968
485969
486972
487973
488976
489977
490980
491981
492984
493985
494988
495989
496992
497994
498996
499998