This tutorial is out of date and no longer maintained.
Welcome to the second installation of Learning React, a series of articles focused on becoming proficient and effective with Facebook’s React library. If you haven’t read the first installation, Getting Started and Concepts, it is highly recommended that you do so before proceeding.
Today we are going to build an application in React using Isomorphic Javascript.
Iso-what?
Isomorphic. Javascript. It means writing one codebase that can run on both the server-side and the client-side.
This is the concept behind frameworks like Rendr, Meteor, and Derby. You can also accomplish this using React, and today we are going to learn how.
I’m an Angular fan just like everybody else, but one pain point is the potential SEO impact.
But I thought Google executes and indexes JavaScript?
Yeah, not really. They just give you an opportunity to serve up static HTML. You still have to generate that HTML with PhantomJS or a third-party service.
Enter React.
React is amazing on the client-side, but its ability to be rendered on the server-side makes it truly special. This is because React uses a virtual DOM instead of the real one, and allows us to render our components to markup.
Alright gang, let’s get down to brass tacks. We are going to build an app that shows tweets about this article and loads new ones in real-time. Here are the requirements:
Let’s take a look at some of the tools we are going to use besides React:
Let’s start by building out the server-side of our app. Download the project files here, and follow along below:
components/ // React Components Directory
---- Loader.react.js // Loader Component
---- NotificationBar.react.js // Notification Bar Component
---- Tweet.react.js // Single Tweet Component
---- Tweets.react.js // Tweets Component
---- TweetsApp.react.js // Main App Component
models/ // Mongoose Models Directory
---- Tweet.js // Our Mongoose Tweet Model
public/ // Static Files Directory
---- css
---- js
---- svg
utils/
----streamHandler.js // Utility method for handling Twitter stream callbacks
views/ // Server Side Handlebars Views
----layouts
-------- main.handlebars
---- home.handlebars
app.js // Client side main
config.js // App configuration
package.json
routes.js // Route definitions
server.js // Server side main
{
"name": "react-isomorph",
"version": "0.0.0",
"description": "Isomorphic React Example",
"main": "app.js",
"scripts": {
"watch": "watchify app.js -o public/js/bundle.js -v",
"browserify": "browserify app.js | uglifyjs > public/js/bundle.js",
"build": "npm run browserify ",
"start": "npm run watch & nodemon server.js"
},
"author": "Ken Wheeler",
"license": "MIT",
"dependencies": {
"express": "~4.9.7",
"express-handlebars": "~1.1.0",
"mongoose": "^3.8.17",
"node-jsx": "~0.11.0",
"ntwitter": "^0.5.0",
"react": "~0.11.2",
"socket.io": "^1.1.0"
},
"devDependencies": {
"browserify": "~6.0.3",
"nodemon": "^1.2.1",
"reactify": "~0.14.0",
"uglify-js": "~2.4.15",
"watchify": "~2.0.0"
},
"browserify": {
"transform": [
"reactify"
]
}
}
If you’re following along, simply run npm install
and go get a glass of water. When you get back, we should have all of our dependencies in place, and it’s time to get our build on.
We now have a couple of commands we can use:
npm run watch
- Running this command starts a watchify watch, so when we edit our js files, they get browserified on save.npm run build
- Running this command builds our bundle.js and minifies it for productionnpm start
- Running this command sets up a watch and runs our app via nodemonnode server
- This command is what we use to run our app. In a production environment, I would recommend using something like forever or pm2.For the purposes of keeping our focus on React, I am going to assume we are working with a working knowledge of Express-based server configurations. If you aren’t familiar with what is going on below, you can read up on any of the helpful articles on this site about the subject, most notably ExpressJS 4.0 - New Features & Upgrading from 3.0.
In the file below, we are doing 4 specific things:
// Require our dependencies
var express = require('express'),
exphbs = require('express-handlebars'),
http = require('http'),
mongoose = require('mongoose'),
twitter = require('ntwitter'),
routes = require('./routes'),
config = require('./config'),
streamHandler = require('./utils/streamHandler');
// Create an express instance and set a port variable
var app = express();
var port = process.env.PORT || 8080;
// Set handlebars as the templating engine
app.engine('handlebars', exphbs({ defaultLayout: 'main'}));
app.set('view engine', 'handlebars');
// Disable etag headers on responses
app.disable('etag');
// Connect to our mongo database
mongoose.connect('mongodb://localhost/react-tweets');
// Create a new ntwitter instance
var twit = new twitter(config.twitter);
// Index Route
app.get('/', routes.index);
// Page Route
app.get('/page/:page/:skip', routes.page);
// Set /public as our static content dir
app.use("/", express.static(__dirname + "/public/"));
// Fire it up (start our server)
var server = http.createServer(app).listen(port, function() {
console.log('Express server listening on port ' + port);
});
// Initialize socket.io
var io = require('socket.io').listen(server);
// Set a stream listener for tweets matching tracking keywords
twit.stream('statuses/filter',{ track: 'scotch_io, #scotchio'}, function(stream){
streamHandler(stream,io);
});
nTwitter allows us to access the Twitter streaming API, so we use the statuses/filter
endpoint, along with the track
property, to return tweets that use a #scotchio
hashtag or mention scotch_io
. You can modify this query to your liking by using the settings outlined within the Twitter Streaming API.
In our app, we use Mongoose to define our Tweet model. When receiving our data from our Twitter stream, we need somewhere to store it, and a static query method to return subsets of data based upon app parameters:
var mongoose = require('mongoose');
// Create a new schema for our tweet data
var schema = new mongoose.Schema({
twid : String
, active : Boolean
, author : String
, avatar : String
, body : String
, date : Date
, screenname : String
});
// Create a static getTweets method to return tweet data from the db
schema.statics.getTweets = function(page, skip, callback) {
var tweets = [],
start = (page * 10) + (skip * 1);
// Query the db, using skip and limit to achieve page chunks
Tweet.find({},'twid active author avatar body date screenname',{skip: start, limit: 10}).sort({date: 'desc'}).exec(function(err,docs){
// If everything is cool...
if(!err) {
tweets = docs; // We got tweets
tweets.forEach(function(tweet){
tweet.active = true; // Set them to active
});
}
// Pass them back to the specified callback
callback(tweets);
});
};
// Return a Tweet model based upon the defined schema
module.exports = Tweet = mongoose.model('Tweet', schema);
After defining our schema, we create a static method called getTweets
. It takes 3 arguments, page
, skip
, and callback
.
When we have an application that not only renders server-side but has an active stream saving to the database behind the scenes, we need to create a way to make sure that when we request our next page of Tweets, it takes into account that Tweets may have been added since the app has been running on the client.
This is where the skip
argument comes into play. If we have 2 new Tweets come in, and then request the next page, we need to skip 2 indexes forward so that our application’s pages are relative to its original count, and we don’t end up with duplicate Tweets.
When our Twitter stream connection sends a new Tweet event, we need a method to take that data, save it to our database, and emit an event to the client-side with the Tweet data:
var Tweet = require('../models/Tweet');
module.exports = function(stream, io){
// When tweets get sent our way ...
stream.on('data', function(data) {
// Construct a new tweet object
var tweet = {
twid: data['id'],
active: false,
author: data['user']['name'],
avatar: data['user']['profile_image_url'],
body: data['text'],
date: data['created_at'],
screenname: data['user']['screen_name']
};
// Create a new model instance with our object
var tweetEntry = new Tweet(tweet);
// Save 'er to the database
tweetEntry.save(function(err) {
if (!err) {
// If everything is cool, socket.io emits the tweet.
io.emit('tweet', tweet);
}
});
});
};
We start by requiring our Model, and when our stream emits an event, we grab the data we want to save, save it, and emit our socket event to the client with the Tweet we just saved.
Our routes are where the majority of the magic is going to happen today. Let’s take a look at routes.js
:
var JSX = require('node-jsx').install(),
React = require('react'),
TweetsApp = require('./components/TweetsApp.react'),
Tweet = require('./models/Tweet');
module.exports = {
index: function(req, res) {
// Call static model method to get tweets in the db
Tweet.getTweets(0,0, function(tweets, pages) {
// Render React to a string, passing in our fetched tweets
var markup = React.renderComponentToString(
TweetsApp({
tweets: tweets
})
);
// Render our 'home' template
res.render('home', {
markup: markup, // Pass rendered react markup
state: JSON.stringify(tweets) // Pass current state to client side
});
});
},
page: function(req, res) {
// Fetch tweets by page via param
Tweet.getTweets(req.params.page, req.params.skip, function(tweets) {
// Render as JSON
res.send(tweets);
});
}
}
In the code above, we have two specific requirements:
By requiring our React components, and calling the renderComponentToString
method, we are converting them to a string, which is then passed into our home.handlebars
template.
We leverage our Tweets
model to find tweets that have been stored in the database after coming in from our stream connection. Upon receiving the results of our query, we render our component to a String
.
Notice that we are using non-JSX syntax when defining the component we want to render. This is because we are in our routes file and it is not being transformed.
Lets take a look at our render
method:
// Render our 'home' template
res.render('home', {
markup: markup, // Pass rendered react markup
state: JSON.stringify(tweets) // Pass current state to client side
});
Not only are we passing our stringified markup, but we also pass a state property. In order for our server-rendered application to pick up where it left off on the client, we need to pass the last state to the client so we can keep them in sync.
Our app has two main templates, both of which are ridiculously simple. We start with a layout view, which wraps our target template.
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>React Tweets</title>
<link rel="stylesheet" type="text/css" href="css/style.css">
</head>
<body>
{{{ body }}}
<script src="https://cdn.socket.io/socket.io-1.1.0.js"></script>
<script src="js/bundle.js"></script>
</body>
</html>
{{{body}}}
is where our template home.handlebars
is loaded into. On this page, we also add script tags for socket.io and our bundle.js that Browserify outputs.
<section id="react-app">{{{ markup }}}</div>
<script id="initial-state" type="application/json">{{{state}}}</script>
In our home.handlebars
template, we take the component markup that we generated in our routes, and insert at {{{markup}}}
.
Directly below we transfer our state. We use a script tag to hold a JSON string of our server’s state. When initializing our React components on the client-side, we pull our state from here and then remove it.
On the server, we use renderComponentToString
to generate markup for our components, but when using Browserify, we need a client-side entry point to pick up the state we just saved, and mount our application component.
/** @jsx React.DOM */
var React = require('react');
var TweetsApp = require('./components/TweetsApp.react');
// Snag the initial state that was passed from the server side
var initialState = JSON.parse(document.getElementById('initial-state').innerHTML)
// Render the components, picking up where react left off on the server
React.renderComponent(
<TweetsApp tweets={initialState}/>,
document.getElementById('react-app')
);
We start by getting our initial state from the script element that we added in home.handlebars
. We parse the JSON data and then call React.renderComponent
.
Because we are working with a file that will be bundled with Browserify and will have access to JSX transforms, we can use JSX syntax when passing our component as an argument.
We initialize our component by adding the state we just grabbed to an attribute on our component. This makes it available via this.props
within our component’s methods.
Finally, our second argument mounts our rendered component to our #react-app
div element from home.handlebars
.
Now that we have all of our setups out of the way, it is time to get down to business. In our previous files, we rendered a custom component named TweetsApp.
Let’s create our TweetsApp class.
module.exports = TweetsApp = React.createClass({
// Render the component
render: function(){
return (
<div className="tweets-app">
<Tweets tweets={this.state.tweets} />
<Loader paging={this.state.paging}/>
<NotificationBar count={this.state.count} onShowNewTweets={this.showNewTweets}/>
</div>
)
}
});
Our app is going to have 4 child components. We need a Tweets display, A singular Tweet, a loading spinner for loading paged results, and a notification bar. We wrap them in a div element with the tweets-app
class.
Very similarly to the way we passed our state via component props when transferring our server’s state, we pass our current state down to the child components via props.
But where does the state come from?
In React, setting state via props is generally considered an anti-pattern. However, when setting an initial state, and transferring a state from the server, this is not the case. Because the getInitialState
method is only called before the first mount of our component, we need to use the componentWillReceiveProps
method to make sure that if we mount our component again, that it will receive the state:
// Set the initial component state
getInitialState: function(props){
props = props || this.props;
// Set initial application state using props
return {
tweets: props.tweets,
count: 0,
page: 0,
paging: false,
skip: 0,
done: false
};
},
componentWillReceiveProps: function(newProps, oldProps){
this.setState(this.getInitialState(newProps));
},
Aside from our tweets, which we pass down from the server, our state on the client contains some new properties. We use the count
property to track how many tweets are currently unread. Unread tweets are ones that have been loaded via socket.io, that came in after the page loaded, but are not active yet. This resets every time we call showNewTweets
.
The page
property keeps track of how many pages we have currently loaded from the server. When starting a page load, in between the event kicking off, and when the results are rendered to the page, our paging
property is set to true, preventing the event from starting again until the current request has completed. The done
property is set to true when we have run out of pages.
Our skip
property is like count
but never gets reset. This gives us a value for how many tweets are now in the database that we need to skip because our initial load doesn’t account for them. This prevents us from rendering duplicate tweets to the page.
As it stands, we are good to go on the server-side rendering of our component. However, our client-side is where our state changes from UI interaction and socket events, so we need to set up some methods to handle that.
We can use the componentDidMount
method to accomplish this safely because it only runs when a component is mounted on the client:
// Called directly after component rendering, only on client
componentDidMount: function(){
// Preserve self reference
var self = this;
// Initialize socket.io
var socket = io.connect();
// On tweet event emission...
socket.on('tweet', function (data) {
// Add a tweet to our queue
self.addTweet(data);
});
// Attach scroll event to the window for infinity paging
window.addEventListener('scroll', this.checkWindowScroll);
},
In the code above, we set up two event listeners to modify the state and subsequent rendering of our components. The first is our socket listener. When a new tweet is emitted, we call our addTweet
method to add it to an unread queue.
// Method to add a tweet to our timeline
addTweet: function(tweet){
// Get current application state
var updated = this.state.tweets;
// Increment the unread count
var count = this.state.count + 1;
// Increment the skip count
var skip = this.state.skip + 1;
// Add tweet to the beginning of the tweets array
updated.unshift(tweet);
// Set application state
this.setState({tweets: updated, count: count, skip: skip});
},
Tweets in the unread queue are on the page, but not shown until the user acknowledges them in the NotificationBar component. When they do, an event is passed back via onShowNewTweets
which calls our showNewTweets
method:
// Method to show the unread tweets
showNewTweets: function(){
// Get current application state
var updated = this.state.tweets;
// Mark our tweets active
updated.forEach(function(tweet){
tweet.active = true;
});
// Set application state (active tweets + reset unread count)
this.setState({tweets: updated, count: 0});
},
This method loops through our tweets and sets their active property to true, and then sets our state. This makes any unshown Tweets now show (via CSS).
Our second event listens to the window
scroll event and fires our checkWindowScroll
event to check whether we should load a new page.
// Method to check if more tweets should be loaded, by scroll position
checkWindowScroll: function(){
// Get scroll pos & window data
var h = Math.max(document.documentElement.clientHeight, window.innerHeight || 0);
var s = document.body.scrollTop;
var scrolled = (h + s) > document.body.offsetHeight;
// If scrolled enough, not currently paging and not complete...
if(scrolled && !this.state.paging && !this.state.done) {
// Set application state (Paging, Increment page)
this.setState({paging: true, page: this.state.page + 1});
// Get the next page of tweets from the server
this.getPage(this.state.page);
}
},
In our checkWindowScroll
method, if we have reached the bottom of the page, aren’t currently in the paging process, and haven’t reached the last page, we call our getPage
method:
// Method to get JSON from server by page
getPage: function(page){
// Setup our ajax request
var request = new XMLHttpRequest(), self = this;
request.open('GET', 'page/' + page + "/" + this.state.skip, true);
request.onload = function() {
// If everything is cool...
if (request.status >= 200 && request.status < 400){
// Load our next page
self.loadPagedTweets(JSON.parse(request.responseText));
} else {
// Set application state (Not paging, paging complete)
self.setState({paging: false, done: true});
}
};
// Fire!
request.send();
},
In this method, we pass our incremented page index, along with our skip property of our state object to our /page
route. If there are no more Tweets, we set paging
to false and done
to true, ending our ability to page.
If tweets are returned, we will return JSON data based upon the given arguments, which we then load with the loadPagedTweets
method:
// Method to load tweets fetched from the server
loadPagedTweets: function(tweets){
var self = this;
// If we still have tweets...
if(tweets.length > 0) {
// Get current application state
var updated = this.state.tweets;
// Push them onto the end of the current tweets array
tweets.forEach(function(tweet){
updated.push(tweet);
});
// This app is so fast, I actually use a timeout for dramatic effect
// Otherwise you'd never see our loader svg
setTimeout(function(){
// Set application state (Not paging, add tweets)
self.setState({tweets: updated, paging: false});
}, 1000);
} else {
// Set application state (Not paging, paging complete)
this.setState({done: true, paging: false});
}
},
This method takes our current set of Tweets in our state object and pushes our new Tweets onto the end. I use a setTimeout
before calling setState
so that we can actually see the loader component for at least a little while.
Check out our finished component below:
/** @jsx React.DOM */
var React = require('react');
var Tweets = require('./Tweets.react.js');
var Loader = require('./Loader.react.js');
var NotificationBar = require('./NotificationBar.react.js');
// Export the TweetsApp component
module.exports = TweetsApp = React.createClass({
// Method to add a tweet to our timeline
addTweet: function(tweet){
// Get current application state
var updated = this.state.tweets;
// Increment the unread count
var count = this.state.count + 1;
// Increment the skip count
var skip = this.state.skip + 1;
// Add tweet to the beginning of the tweets array
updated.unshift(tweet);
// Set application state
this.setState({tweets: updated, count: count, skip: skip});
},
// Method to get JSON from server by page
getPage: function(page){
// Setup our ajax request
var request = new XMLHttpRequest(), self = this;
request.open('GET', 'page/' + page + "/" + this.state.skip, true);
request.onload = function() {
// If everything is cool...
if (request.status >= 200 && request.status < 400){
// Load our next page
self.loadPagedTweets(JSON.parse(request.responseText));
} else {
// Set application state (Not paging, paging complete)
self.setState({paging: false, done: true});
}
};
// Fire!
request.send();
},
// Method to show the unread tweets
showNewTweets: function(){
// Get current application state
var updated = this.state.tweets;
// Mark our tweets active
updated.forEach(function(tweet){
tweet.active = true;
});
// Set application state (active tweets + reset unread count)
this.setState({tweets: updated, count: 0});
},
// Method to load tweets fetched from the server
loadPagedTweets: function(tweets){
var self = this;
// If we still have tweets...
if(tweets.length > 0) {
// Get current application state
var updated = this.state.tweets;
// Push them onto the end of the current tweets array
tweets.forEach(function(tweet){
updated.push(tweet);
});
// This app is so fast, I actually use a timeout for dramatic effect
// Otherwise you'd never see our loader svg
setTimeout(function(){
// Set application state (Not paging, add tweets)
self.setState({tweets: updated, paging: false});
}, 1000);
} else {
// Set application state (Not paging, paging complete)
this.setState({done: true, paging: false});
}
},
// Method to check if more tweets should be loaded, by scroll position
checkWindowScroll: function(){
// Get scroll pos & window data
var h = Math.max(document.documentElement.clientHeight, window.innerHeight || 0);
var s = document.body.scrollTop;
var scrolled = (h + s) > document.body.offsetHeight;
// If scrolled enough, not currently paging and not complete...
if(scrolled && !this.state.paging && !this.state.done) {
// Set application state (Paging, Increment page)
this.setState({paging: true, page: this.state.page + 1});
// Get the next page of tweets from the server
this.getPage(this.state.page);
}
},
// Set the initial component state
getInitialState: function(props){
props = props || this.props;
// Set initial application state using props
return {
tweets: props.tweets,
count: 0,
page: 0,
paging: false,
skip: 0,
done: false
};
},
componentWillReceiveProps: function(newProps, oldProps){
this.setState(this.getInitialState(newProps));
},
// Called directly after component rendering, only on client
componentDidMount: function(){
// Preserve self reference
var self = this;
// Initialize socket.io
var socket = io.connect();
// On tweet event emission...
socket.on('tweet', function (data) {
// Add a tweet to our queue
self.addTweet(data);
});
// Attach scroll event to the window for infinity paging
window.addEventListener('scroll', this.checkWindowScroll);
},
// Render the component
render: function(){
return (
<div className="tweets-app">
<Tweets tweets={this.state.tweets} />
<Loader paging={this.state.paging}/>
<NotificationBar count={this.state.count} onShowNewTweets={this.showNewTweets}/>
</div>
)
}
});
Our main component uses 4 child components to compose an interface based upon our current state values. Let’s review them and how they work with their parent component:
/** @jsx React.DOM */
var React = require('react');
var Tweet = require('./Tweet.react.js');
module.exports = Tweets = React.createClass({
// Render our tweets
render: function(){
// Build list items of single tweet components using map
var content = this.props.tweets.map(function(tweet){
return (
<Tweet key={tweet.twid} tweet={tweet} />
)
});
// Return ul filled with our mapped tweets
return (
<ul className="tweets">{content}</ul>
)
}
});
Our Tweets component is passed our current state’s tweets via its tweets
prop and is used to render our Tweets. In our render
method, we build a list of Tweets by executing the map method on our array of Tweets. Each iteration creates a new rendering of a child Tweet
component, and the results are inserted into an unordered list.
/** @jsx React.DOM */
var React = require('react');
module.exports = Tweet = React.createClass({
render: function(){
var tweet = this.props.tweet;
return (
<li className={"tweet" + (tweet.active ? ' active' : '')}>
<img src={tweet.avatar} className="avatar"/>
<blockquote>
<cite>
<a href={"http://www.twitter.com/" + tweet.screenname}>{tweet.author}</a>
<span className="screen-name">@{tweet.screenname}</span>
</cite>
<span className="content">{tweet.body}</span>
</blockquote>
</li>
)
}
});
Our singular Tweet component renders each individual tweet as a list item. We conditionally render an active
class based upon the Tweet’s active status, which helps us hide it while it is still in the queue.
Each tweet’s data is then used to fill in the predefined Tweet template so that our Tweet display looks legit.
/** @jsx React.DOM */
var React = require('react');
module.exports = NotificationBar = React.createClass({
render: function(){
var count = this.props.count;
return (
<div className={"notification-bar" + (count > 0 ? ' active' : '')}>
<p>There are {count} new tweets! <a href="#top" onClick={this.props.onShowNewTweets}>Click here to see them.</a></p>
</div>
)
}
});
Our Notification Bar is fixed to the top of the page and displays the current count of unread Tweets, and when clicked, shows all the tweets currently in the queue.
We conditionally display an active class based upon whether we actually have any unread Tweets, using the count
prop.
On our anchor tag, an onClick
handler calls our component’s own prop onShowNewTweets
which is bound to showNewTweets
in its parent. This allows us to pass the event back upwards so it can be handled in our parent component, where we keep our state management.
/** @jsx React.DOM */
var React = require('react');
module.exports = Loader = React.createClass({
render: function(){
return (
<div className={"loader " + (this.props.paging ? "active" : "")}>
<img src="svg/loader.svg" />
</div>
)
}
});
Our loader component is a fancy SVG loading animation. It is used during paging to indicate that we are loading a new page. An active
class is set using our paging
prop, that controls whether our component is shown or not (via CSS).
All that’s left to do now is to run node server
on your command line! You can run this locally or just check out the live demo below. If you want to see a Tweet come in live, the easiest way is to just share this article with the demo open and you can see it in real-time!
In the next installment of Learning React, we will be learning how to leverage Facebook’s Flux Architecture to enforce unidirectional data flow. Flux is Facebook’s recommended complementary architecture for React applications. We will also be reviewing some open-source Flux libraries that make implementing the Flux architecture a breeze.
Look for it soon!
Thanks for learning with the DigitalOcean Community. Check out our offerings for compute, storage, networking, and managed databases.
This textbox defaults to using Markdown to format your answer.
You can type !ref in this text area to quickly search our full set of tutorials, documentation & marketplace offerings and insert the link!