This site is supported by donations to The OEIS Foundation.
User:Nicolas Bègue
Interested in modulo 3 reduction of k-bonacci series and intermediate series , i developed a set of script designed for raspberry pi 3 which calculate the unique set of modulo 3 Pisano periods for each linear recurrence family by iterating over ternary combinations for initializations values : https://github.com/Nico59200/k-bonacci-pisano-finder
Fibonacci/Lucas :
01120221 length 8
Padovan/Perrin :
0010111220121 length 13 0020222110212
tribonacci :
0011211102021 length 13 0022122201012
tetranacci :
00011212022012221101020021 length 26 (2*13) 00022121011021112202010012 00101211201110020212210222 1 length 1 2
hexanacci :
one period of length 728 (7*8*13)
For a given linear recurrence family initializations values are numbered according to the linear recurrence formula : Fibonacci : 2 init values Padovan/Perrin/Tribonacci : 3 init values tetranacci : 4 init values pentanacci : 5 init values hexa .... ... So i use a ternary combinations generator to iterate serie calculation over all available combinations corresponding to a given linear recurrence order . e.g :
./ternarygen.sh 2 0 1 0 2 1 0 1 1 1 2 2 0 2 1 2 2
./ternarygen.sh 3 0 0 1 0 0 2 0 1 0 0 1 1 0 1 2 0 2 0 0 2 1 0 2 2 1 0 0 1 0 1 1 0 2 1 1 0 1 1 1 1 1 2 1 2 0 1 2 1 1 2 2 2 0 0 2 0 1 2 0 2 2 1 0 2 1 1 2 1 2 2 2 0 2 2 1 2 2 2
once a serie is calculated with a combination of initialization value , it uses a Mathematica wrapper script to find the Pisano period associated . After that a rotating array find unique Periods in the generated list . These periods lengths are Fibonacci numbers or multiples of Fibonacci numbers , some are paired to be complementary to three , the others are auto-complementary to three if splitted in two like the Pisano period 01120221 : 0112 (+) 0221 (=) 0333 .
Feel free to play with my scripts or to implement them in another language . It's open . ^^