# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a376507 Showing 1-1 of 1 %I A376507 #8 Sep 30 2024 12:59:12 %S A376507 18,24,26,32,68,74,76,82,118,124,126,132,168,174,176,182,218,224,226, %T A376507 232,268,274,276,282,318,324,326,332,368,374,376,382,418,424,426,432, %U A376507 468,474,476,482,518,524,526,532,568,574,576,582,618,624,626,632,668,674 %N A376507 Natural numbers whose iterated squaring modulo 100 eventually settles at the attractor 76. %C A376507 The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376506), 25 (cf. A017329), or 76 (this sequence), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (cf. A376509). %C A376507 The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 6, 2, 6, 36, ... %D A376507 Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram). %H A376507 Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). %F A376507 G.f.: 2*x*(9 + 3*x + x^2 + 3*x^3 + 9*x^4)/((1 - x)^2*(1 + x + x^2 + x^3)). - _Stefano Spezia_, Sep 26 2024 %e A376507 18^2 = 24 -> 24^2 = 76 -> 76^2 = 76 -> ... (mod 100). %Y A376507 Cf. A008592, A017329, A376506, A376508, A376509. %K A376507 nonn,easy %O A376507 1,1 %A A376507 _Martin Renner_, Sep 25 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE