# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a372183 Showing 1-1 of 1 %I A372183 #8 Apr 21 2024 11:40:46 %S A372183 1,1,13,340,13713,752516,52372051,4421017602,438996446545, %T A372183 50142716621848,6477138263806011,933667525669154486, %U A372183 148582199464010331289,25874197258988478298068,4894174597530612144797299,999256176035969437218129946,219035687330062179838536993441 %N A372183 E.g.f. A(x) satisfies A(x) = exp( x * A(x)^5 / (1 - x * A(x)^2) ). %F A372183 If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s ), then a(n) = r * n! * Sum_{k=0..n} (t*k+u*(n-k)+r)^(k-1) * binomial(n+(s-1)*k-1,n-k)/k!. %o A372183 (PARI) a(n, r=1, s=1, t=5, u=2) = r*n!*sum(k=0, n, (t*k+u*(n-k)+r)^(k-1)*binomial(n+(s-1)*k-1, n-k)/k!); %Y A372183 Cf. A212722, A361093, A365012. %Y A372183 Cf. A372165. %K A372183 nonn %O A372183 0,3 %A A372183 _Seiichi Manyama_, Apr 21 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE