# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a355589 Showing 1-1 of 1 %I A355589 #14 Jul 25 2022 16:07:21 %S A355589 1,38,8632,1991753,459625866 %N A355589 a(n) is the least distance of two nodes on the same grid line in an infinite triangular lattice of one-ohm resistors for which the resistance measured between the two nodes is greater than n ohms. %C A355589 The terms are obtained by a high-precision evaluation of the integral R(j,k) = (1/Pi) * Integral_{y=0..Pi/2} (1 - exp(-|j-k|*x)*cos((j+k)*y)) / (sinh(x)*cos(y)) dy, with x = arccosh(2/cos(y)-cos(y)), such that floor(R(m-1,0)) < floor(R(m,0)). The values of m for which this condition is satisfied are the terms of the sequence. See Atkinson and van Steenwijk (1999, page 491, Appendix B) for a Mathematica implementation of the integral. %H A355589 D. Atkinson and F. J. van Steenwijk, Infinite resistive lattices, Am. J. Phys. 67 (1999), 486-492. (See A211074 for an alternative link.) %e A355589 a(0) = 1: R(1,0) = 1/3 is the first resistance > 0; %e A355589 a(1) = 38: R(37,0) = 0.9980131561985..., R(38,0) = 1.0029141482654...; %e A355589 a(2) = 8632: R(8631) = 1.99999787859849..., R(8632) = 2.000019169949784851...; %e A355589 a(3) = 1991753: R(1991752) = 2.99999998586..., R(1991753) = 3.000000078131...; %e A355589 a(4) = 459625866: R(459625865)=3.999999999731...; R(459625866)=4.000000000131.... %e A355589 Assuming a fitted asymptotic logarithmic growth of R(x,0) = log(x)/(Pi*sqrt(3)) + 0.334412..., a(5) is approximately 1.06*10^11, but 250 GByte of main memory is not enough for PARI's function intnum to compute the value of the integral for arguments of that size. %Y A355589 Cf. A355585, A355955 (same problem for square lattice). %K A355589 nonn,hard,more %O A355589 0,2 %A A355589 _Hugo Pfoertner_, Jul 23 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE