# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a330523 Showing 1-1 of 1 %I A330523 #24 Sep 08 2020 06:12:15 %S A330523 5,3,5,8,9,6,1,5,3,8,2,8,3,3,7,9,9,9,8,0,8,5,0,2,6,3,1,3,1,8,5,4,5,9, %T A330523 5,0,6,4,8,2,2,2,3,7,4,5,1,4,1,4,5,2,7,1,1,5,1,0,1,0,8,3,4,6,1,3,3,2, %U A330523 8,8,1,1,9,6,1,4,5,4,1,1,0,4,5,1,1,4,4,6,5,8,2,7,3,1,0,0,2,3,4,4,0,5,3,5,1,1 %N A330523 Decimal expansion of Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4). %F A330523 Equals (6/Pi^2) * A065465. - _Amiram Eldar_, Sep 08 2020 %e A330523 0.5358961538283379998085026313185459506482223745141452711510108346133288119... %t A330523 Do[Print[N[Exp[-Sum[q = Expand[(p^2 + p^3 - p^4)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}]], 50]], {t, 10, 100, 10}] %o A330523 (PARI) (6/Pi^2) * prodeulerrat(1 - 1/(p^2*(p+1))) \\ _Amiram Eldar_, Sep 08 2020 %Y A330523 Cf. A055653, A062354, A065465, A175639, A256392, A332713. %K A330523 nonn,cons %O A330523 0,1 %A A330523 _Vaclav Kotesovec_, Dec 17 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE