# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a320970 Showing 1-1 of 1 %I A320970 #25 Oct 30 2018 05:43:31 %S A320970 1,-4,4,-4,20,-28,20,-52,84,-104,156,-180,308,-460,468,-684,1028, %T A320970 -1308,1592,-2084,2940,-3668,4564,-5716,7556,-9912,11484,-14616,19252, %U A320970 -23548,28316,-35188,44724,-54532,65996,-79948,99784,-122796,143972,-175372,216524,-259996,308004,-371140 %N A320970 Expansion of Product_{k>0} theta_4(q^k)/theta_3(q^k), where theta_3() and theta_4() are the Jacobi theta functions. %H A320970 Seiichi Manyama, Table of n, a(n) for n = 0..1000 %H A320970 Eric Weisstein's World of Mathematics, Jacobi Theta Functions %F A320970 Expansion of Product_{k>0} (eta(q^k)^4*eta(q^(4*k))^2) / eta(q^(2*k))^6. %F A320970 a(n) ~ (-1)^n * exp(Pi*sqrt(log(2)*n)) * (log(2))^(1/4) / (4*n^(3/4)). - _Vaclav Kotesovec_, Oct 26 2018 %t A320970 With[{nmax=80}, CoefficientList[Series[Product[EllipticTheta[4, 0, q^k]/EllipticTheta[3, 0, q^k], {k, 1, nmax+2}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Oct 29 2018 *) %o A320970 (PARI) m=80; q='q+O('q^m); Vec(1/prod(k=1,m+2, eta(q^(2*k))^6/( eta(q^k)^4* eta(q^(4*k))^2) )) \\ _G. C. Greubel_, Oct 29 2018 %Y A320970 Cf. A000122, A002448, A320068, A320908, A320967. %K A320970 sign %O A320970 0,2 %A A320970 _Seiichi Manyama_, Oct 25 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE