# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a320610 Showing 1-1 of 1 %I A320610 #11 Jul 31 2020 16:41:26 %S A320610 1,3,6,12,20,35,54,78,119,173,245,347,480,657,894,1193,1588,2097,2745, %T A320610 3563,4612,5916,7556,9609,12150,15286,19177,23924,29757,36876,45533, %U A320610 56026,68758,84080,102556,124735,151315,183059,220998,266101,319720,383306,458569 %N A320610 Number of parts in all partitions of n in which no part occurs more than seven times. %H A320610 Alois P. Heinz, Table of n, a(n) for n = 1..5000 %F A320610 a(n) ~ 3^(5/4) * log(2) * exp(Pi*sqrt(7*n/3)/2) / (2^(3/2) * 7^(1/4) * Pi * n^(1/4)). - _Vaclav Kotesovec_, Oct 18 2018 %p A320610 b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(7*i*(i+1)/2 [0, l[1]*j]+l)(b(n-i*j, min(n-i*j, i-1))), j=0..min(n/i, 7)))) %p A320610 end: %p A320610 a:= n-> b(n$2)[2]: %p A320610 seq(a(n), n=1..50); %t A320610 Table[Length[Flatten[Select[IntegerPartitions[n], Max[Tally[#][[All, 2]]] <= 7 &]]], {n, 43}] (* _Robert Price_, Jul 31 2020 *) %Y A320610 Column k=7 of A210485. %Y A320610 Cf. A261775. %K A320610 nonn %O A320610 1,2 %A A320610 _Alois P. Heinz_, Oct 17 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE