# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a299296 Showing 1-1 of 1 %I A299296 #10 Feb 17 2018 21:12:45 %S A299296 1,2,7,30,140,684,3440,17652,91936,484356,2575280,13795668,74367408, %T A299296 403026372,2194186272,11993494356,65787201984,361983246084, %U A299296 1997299980368,11048026950228,61250480822416,340274092662084,1893939042807872,10559753415822420,58970301517748000 %N A299296 G.f. 1/(1-z*R(z*m(z))) where R(z) = (1-z-(z+1)*sqrt(1-4*z))/(2*z^2), m(z) = (3-z-sqrt(1-6*z+z^2))/2. %H A299296 Michael Anshelevich, Product formulas on posets, Wick products, and a correction for the q-Poisson process, arXiv:1708.08034 [math.OA], 2017. %p A299296 R:=z->(1-z-(z+1)*sqrt(1-4*z))/(2*z^2); %p A299296 m:=z->(3-z-sqrt(1-6*z+z^2))/2; %p A299296 M:=z->1/(1-z*R(z*m(z))); %p A299296 series(M(z),z,40); %p A299296 seriestolist(%); %t A299296 R[z_] := (1 - z - (z + 1) Sqrt[1 - 4 z])/(2 z^2); m[z_] := (3 - z - Sqrt[1 - 6 z + z^2])/2; CoefficientList[Series[1/(1 - z R[z m[z]]), {z, 0, 24}], z] (* _Michael De Vlieger_, Feb 17 2018 *) %K A299296 nonn %O A299296 0,2 %A A299296 _N. J. A. Sloane_, Feb 17 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE