# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a295197 Showing 1-1 of 1 %I A295197 #28 Oct 12 2024 15:37:43 %S A295197 1,2,9,3,43,2387,7,587,351773,655089857,12,11703,92197523, %T A295197 2586209749712,185543613289205809,43,352902,37893376167, %U A295197 18581620064907130,28224967150633208580385,106103186941524316132396201360,127,13639372,22612848403571,220019264470242220839,8045720086273150473238405274,851013076163633746725692124186472539,218900758256599151027392153440612298654753249 %N A295197 Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using any number of swappable colors, 1 <= k <= n. %C A295197 Two colorings are equivalent if there is a permutation of the colors that takes one to the other in addition to translational symmetries on the torus. (Power Group Enumeration.) Maximum number of colors is n * k. %D A295197 F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973. %H A295197 Andrew Howroyd, Table of n, a(n) for n = 1..300 (24 rows; first 36 terms from Marko Riedel) %H A295197 Marko Riedel et al., Burnside lemma and translational symmetries of the torus. %H A295197 Marko Riedel, Maple code for sequence A295197, computing all colorings at once with no prior classification. %H A295197 Marko Riedel, Maple code for sequence A295197, classifying by the exact number of colors that appear. %F A295197 T(n,k) = Sum_{Q=1..n*k} (1/(n*k*Q!))*(Sum_{sigma in S_Q} Sum_{d|n} Sum_{f|k} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(k/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..Q} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket. %F A295197 T(n,k) = (Sum_{d|n} Sum_{f|k} phi(d) * phi(f) * A162663(n*k/lcm(d,f), lcm(d,f)))/(n*k). - _Andrew Howroyd_, Oct 06 2024 %e A295197 The two-by-two with swappable colors has one monochrome coloring, four colorings with two colors, three colorings with three colors (determined by the color that appears twice) and one coloring with four colors. %e A295197 Triangle begins: %e A295197 1; %e A295197 2, 9; %e A295197 3, 43, 2387; %e A295197 7, 587, 351773, 655089857; %e A295197 12, 11703, 92197523, 2586209749712, 185543613289205809; %e A295197 ... %o A295197 (PARI) \\ B(m,n) is A162663(n,m). %o A295197 B(m,n)={n!*polcoef(exp(sumdiv(m,d, (exp(d*x + O(x*x^n))-1)/d)), n)} %o A295197 T(n,k)={my(v=vector(lcm(n,k))); fordiv(n,d, fordiv(k,e, v[lcm(d,e)] += eulerphi(d) * eulerphi(e) )); sumdiv(#v, g, v[g]*B(g,n*k/g))/(n*k)} \\ _Andrew Howroyd_, Oct 06 2024 %Y A295197 Main diagonal is A376808. %Y A295197 Cf. A162663, A294791, A294792, A294793, A294794. T(n,1) is A084423. %K A295197 nonn,tabl %O A295197 1,2 %A A295197 _Marko Riedel_, Nov 16 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE