# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a279632 Showing 1-1 of 1 %I A279632 #6 Dec 21 2016 10:48:19 %S A279632 2,-2,3,-2,-2,8,-14,17,-12,-5,34,-68,91,-80,11,126,-308,467,-488,235, %T A279632 382,-1316,2291,-2760,1995,638,-5220,10738,-14725,13447,-3007,-18467, %U A279632 47914,-74806,80821,-43890,-51936,201548,-363193,450980,-347117,-55972,782359 %N A279632 Coefficients in the expansion of ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = e - 1, s = r/(1-r). %H A279632 Clark Kimberling, Table of n, a(n) for n = 0..1000 %F A279632 G.f.: ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(2), s = r/(1-r). %t A279632 z = 100; %t A279632 r = E - 1; f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}]; %t A279632 s = r/(r - 1); g[x_] := g[x] = Sum[Floor[s*(k + 1)] x^k, {k, 0, z}] %t A279632 CoefficientList[Series[g[x]/f[x], {x, 0, z}], x] %Y A279632 Cf. A000210, A054385. %K A279632 sign,easy %O A279632 0,1 %A A279632 _Clark Kimberling_, Dec 18 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE