# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a279629 Showing 1-1 of 1 %I A279629 #4 Dec 17 2016 17:51:24 %S A279629 1,-1,2,-2,1,1,-5,10,-13,11,-1,-18,41,-57,53,-17,-53,140,-208,207,-92, %T A279629 -146,454,-708,735,-380,-396,1427,-2307,2467,-1390,-1077,4421,-7346, %U A279629 8018,-4749,-2997,13634,-23075,25501,-15523,-8632,42051,-71931,79989,-49260 %N A279629 Coefficients in the expansion of ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(3), s = sqrt(2). %H A279629 Clark Kimberling, Table of n, a(n) for n = 0..1000 %F A279629 G.f.: ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(3), s = sqrt(2). %t A279629 z = 100; %t A279629 r = Sqrt[2]; f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}]; %t A279629 s = Sqrt[3]; g[x_] := g[x] = Sum[Floor[s*(k + 1)] x^k, {k, 0, z}]; %t A279629 CoefficientList[Series[f[x]/g[x], {x, 0, z}], x] %Y A279629 Cf. A001951, A022838, A279628. %K A279629 sign,easy %O A279629 0,3 %A A279629 _Clark Kimberling_, Dec 17 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE