# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a263284 Showing 1-1 of 1 %I A263284 #28 Feb 17 2020 18:12:54 %S A263284 1,1,1,2,1,1,4,5,1,1,11,16,5,1,1,34,94,21,5,1,1,156,708,152,21,5,1,1, %T A263284 1044,9384,1724,166,21,5,1,1,12346,221135,38996,1997,166,21,5,1,1, %U A263284 274668,9877969,1800340,49961,2036,166,21,5,1,1 %N A263284 Triangle read by rows: T(n,k) is the number of graphs on n vertices with domination number k. %C A263284 The domination number of a graph is given by the minimum size of a dominating set of vertices. A dominating set of vertices is a subset of the vertex set of such that every vertex is either in this subset or adjacent to an element of this subset. %C A263284 For any graph the domination number is greater than or equal to the irredundance number (A332404) and less than or equal to the independent domination number (A332402). - _Andrew Howroyd_, Feb 13 2020 %H A263284 FindStat - Combinatorial Statistic Finder, The domination number of a graph. %H A263284 Eric Weisstein's World of Mathematics, Domination Number %F A263284 T(n,k) = T(n-1,k-1) for 2*(k-1) >= n. - _Andrew Howroyd_, Feb 17 2020 %e A263284 Triangle begins: %e A263284 1; %e A263284 1, 1; %e A263284 2, 1, 1; %e A263284 4, 5, 1, 1; %e A263284 11, 16, 5, 1, 1; %e A263284 34, 94, 21, 5, 1, 1; %e A263284 156, 708, 152, 21, 5, 1, 1; %e A263284 1044, 9384, 1724, 166, 21, 5, 1, 1; %e A263284 12346, 221135, 38996, 1997, 166, 21, 5, 1, 1; %e A263284 274668, 9877969, 1800340, 49961, 2036, 166, 21, 5, 1, 1; %e A263284 ... %Y A263284 Row sums are A000088. %Y A263284 Columns k=1..2 are A000088(n-1), A332625. %Y A263284 Cf. A263341, A332400, A332401, A332402, A332403, A332404, A332405. %K A263284 nonn,tabl,more %O A263284 1,4 %A A263284 _Christian Stump_, Oct 13 2015 %E A263284 Extended to 10 rows by _Eric W. Weisstein_, May 18 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE