# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a259618 Showing 1-1 of 1 %I A259618 #4 Jul 01 2015 14:45:49 %S A259618 4,2,0,1,1,8,8,9,4,1,2,1,0,5,2,8,4,9,6,1,8,7,8,5,5,2,9,7,4,5,6,7,1,2, %T A259618 1,8,7,9,4,4,6,0,3,2,1,3,5,8,9,9,8,3,3,5,2,1,7,6,0,0,1,7,9,1,0,2,0,9, %U A259618 5,8,4,0,5,0,3,1,9,3,3,5,1,6,1,1,1,7,3,5,0,2,6,5,4,2,4,7,2,1,8,9,0,7,6,9 %N A259618 Decimal expansion of J'_3(1), the first root of the derivative of the Bessel function J_3. %H A259618 Eric Weisstein's MathWorld, Bessel Function Zeros %e A259618 4.2011889412105284961878552974567121879446032135899833521760017910209584... %t A259618 FindRoot[D[BesselJ[3, x], x] == 0, {x, 4}, WorkingPrecision -> 104] // Last // Last // RealDigits // First %Y A259618 Cf. A115369 J'_0(1), A259616 J'_1(1), A259617 J'_2(1), A259619 J'_4(1), A259620 J'_5(1). %K A259618 nonn,cons,easy %O A259618 1,1 %A A259618 _Jean-François Alcover_, Jul 01 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE