# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a259375 Showing 1-1 of 1 %I A259375 #19 Sep 08 2021 13:08:41 %S A259375 0,1,2,4,28,80,160,203,560,644,910,34216,34972,74647,87763,122420, %T A259375 221068,225064,6731644,6877120,6927700,7723642,8128762,8271430, %U A259375 77894071,78526951,539212009,28476193256,200267707484,200316968444,201509576804,201669082004,231852949304,232018753064,232039258376,333349186006,2947903946317,5816975658914,5817003372578,11610051837124,27950430282103,81041908142188 %N A259375 Palindromic numbers in bases 3 and 6 written in base 10. %C A259375 Agrees with the number of minimal dominating sets of the halved cube graph Q_n/2 for at least n=1 to 5. - _Eric W. Weisstein_, Sep 06 2021 %H A259375 Giovanni Resta, Table of n, a(n) for n = 1..64 %F A259375 Intersection of A014190 and A029953. %e A259375 28 is in the sequence because 28_10 = 44_6 = 1001_3. %t A259375 (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 6]; If[palQ[pp, 3], AppendTo[lst, pp]; Print[pp]]; k++]; lst %t A259375 b1=3; b2=6; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* _Vincenzo Librandi_, Jul 15 2015 *) %Y A259375 Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383, A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A250411, A099165, A250412. %K A259375 nonn,base %O A259375 1,3 %A A259375 Eric A. Schmidt and _Robert G. Wilson v_, Jul 14 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE