# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a247929 Showing 1-1 of 1 %I A247929 #6 Dec 12 2014 20:57:07 %S A247929 64,529,2760,9569,25512,57769,117256,216937,376656,613721,956736, %T A247929 1432465,2078080,2925313,4025112,5420273,7170312,9325369,11960584, %U A247929 15142537,18952080,23466953,28787520,35002753,42229648,50570737,60151800,71100353 %N A247929 Number of length 2+4 0..n arrays with some disjoint pairs in every consecutive five terms having the same sum %C A247929 Row 2 of A247927 %H A247929 R. H. Hardin, Table of n, a(n) for n = 1..152 %F A247929 Empirical: a(n) = a(n-2) +a(n-3) +a(n-4) -a(n-7) -2*a(n-8) -2*a(n-9) -a(n-10) +2*a(n-12) +2*a(n-13) +2*a(n-14) +2*a(n-15) -a(n-17) -2*a(n-18) -2*a(n-19) -a(n-20) +a(n-23) +a(n-24) +a(n-25) -a(n-27) %F A247929 Also a polynomial of degree 5 plus a linear quasipolynomial with period 420; the first 12 are : %F A247929 Empirical for n mod 420 = 0: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58568/35)*n^2 - (60384/35)*n + 1 %F A247929 Empirical for n mod 420 = 1: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58358/35)*n^2 - (50934/35)*n + (27463/105) %F A247929 Empirical for n mod 420 = 2: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58568/35)*n^2 - (57024/35)*n - (29047/105) %F A247929 Empirical for n mod 420 = 3: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58358/35)*n^2 - (50934/35)*n - (9111/7) %F A247929 Empirical for n mod 420 = 4: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58568/35)*n^2 - (60384/35)*n - (42551/105) %F A247929 Empirical for n mod 420 = 5: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58358/35)*n^2 - (47574/35)*n - (5003/3) %F A247929 Empirical for n mod 420 = 6: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58568/35)*n^2 - (60384/35)*n + (8651/35) %F A247929 Empirical for n mod 420 = 7: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58358/35)*n^2 - (50934/35)*n - (15311/15) %F A247929 Empirical for n mod 420 = 8: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58568/35)*n^2 - (57024/35)*n - (14435/21) %F A247929 Empirical for n mod 420 = 9: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58358/35)*n^2 - (50934/35)*n - (24387/35) %F A247929 Empirical for n mod 420 = 10: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58568/35)*n^2 - (60384/35)*n + (6365/21) %F A247929 Empirical for n mod 420 = 11: a(n) = 2*n^5 + 75*n^4 - (1460/3)*n^3 + (58358/35)*n^2 - (47574/35)*n - (261217/105) %e A247929 Some solutions for n=6 %e A247929 ..2....2....1....2....4....3....2....3....2....0....1....0....6....4....6....3 %e A247929 ..3....3....4....5....4....1....1....6....6....5....5....4....5....5....2....4 %e A247929 ..4....6....1....5....5....2....6....4....1....1....0....5....5....1....2....2 %e A247929 ..3....1....6....6....3....4....0....4....5....1....4....1....3....0....5....1 %e A247929 ..5....5....4....4....4....5....3....1....2....6....1....0....3....4....6....0 %e A247929 ..2....2....3....0....3....1....2....3....1....5....0....4....4....5....1....2 %K A247929 nonn %O A247929 1,1 %A A247929 _R. H. Hardin_, Sep 26 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE