# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a240560 Showing 1-1 of 1 %I A240560 #10 Jul 08 2019 11:33:27 %S A240560 0,0,1,0,-11,0,211,0,-6551,0,303271,0,-19665491,0,1704396331,0, %T A240560 -190473830831,0,26684005437391,0,-4581126864886571,0, %U A240560 946075012113714451,0,-231406946026650896711,0,66164529094650835995511,0,-21866924546405967976005251 %N A240560 a(n) = 2^n*E(n,1/2) + 2^(n+1)*E(n+1,0), where E(n,x) the Euler polynomials. %F A240560 a(n) = skp(n, 0) + skp(n+1, -1), where skp(n, x) are the Swiss-Knife polynomials A153641. %F A240560 a(n) = A122045(n) - A155585(n+1). %p A240560 A240560 := n -> euler(n) + 2^(n+1)*euler(n+1, 0): %p A240560 seq(A240560(n), n=0..28); %t A240560 skp[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*If[n==k, 1, x^(n-k)], {k, 0, n}]; %t A240560 a[n_] := skp[n, 0] + skp[n+1, -1]; %t A240560 Table[a[n], {n, 0, 28}] (* _Jean-François Alcover_, Jul 08 2019 *) %Y A240560 Cf. A122045, A155585, A240559, A240561. %K A240560 sign %O A240560 0,5 %A A240560 _Peter Luschny_, Apr 17 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE