# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a225802 Showing 1-1 of 1 %I A225802 #16 Jan 01 2020 21:59:20 %S A225802 3,8,0,29,39,31,1,43,129,99,275,54,27,12,2,77,646,136,139,179,213,82, %T A225802 202,90,790,111,573,174,242,146,877,454,530,420,1007,593,783,3040,720, %U A225802 1871,753,118,491,428,80,3199,824,282,3026,464,1436,3383,1546,1863,445,1017 %N A225802 Position of first occurrence of n in continued fraction for Pi, or -1 if n never occurs. %C A225802 Correctly indexed version of A032523. %C A225802 All positive integers <= 49003 occur in the first 15000000000 terms of the c.f. (the first that do not are 49004, 50471, 53486, 56315, 58255, ...) - _Eric W. Weisstein_, Jul 27 2013 %H A225802 Eric W. Weisstein, Table of n, a(n) for n = 1..49003 %H A225802 Eric Weisstein's World of Mathematics, Pi Continued Fraction %F A225802 a(n) = A032523(n) - 1. %e A225802 The continued fraction of Pi is [a_0; a_1, a_2, ...] = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, ...], so %e A225802 a(1) = 3 (1 first occurs at term a_3); %e A225802 a(2) = 8 (2 first occurs at term a_8); %e A225802 a(3) = 0 (3 first occurs at term a_0). %Y A225802 Cf. A032523 (= a(n) + 1). %Y A225802 Cf. A001203 (continued fraction of Pi). %K A225802 nonn %O A225802 1,1 %A A225802 _Eric W. Weisstein_, Jul 27 2013 %E A225802 "Escape clause" added to definition by _Jianing Song_, Apr 06 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE