# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a221367 Showing 1-1 of 1 %I A221367 #19 Feb 13 2024 05:00:28 %S A221367 1,7,1,77,1,700,1,6237,1,55447,1,492800,1,4379767,1,38925117,1, %T A221367 345946300,1,3074591597,1,27325378087,1,242853811200,1,2158358922727, %U A221367 1,19182376493357,1,170483029517500,1,1515164889164157,1,13466000972959927,1 %N A221367 The simple continued fraction expansion of F(x) := product {n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = 1/2*(9 - sqrt(77)). %C A221367 The function F(x) := product {n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 9. See also A221364 (N = 3), A221365 (N = 5) and A221366 (N = 7). %C A221367 If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F({1/2*(9 - sqrt(77)}^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. Examples are given below. %H A221367 Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1 %H A221367 Index entries for linear recurrences with constant coefficients, signature (0,10,0,-10,0,1). %F A221367 a(2*n-1) = (1/2*(9 + sqrt(77)))^n + (1/2*(9 - sqrt(77)))^n - 2; a(2*n) = 1. %F A221367 a(4*n-1) = 77*(A018913(n))^2; a(4*n+1) = 7*(A057081(n))^2. %F A221367 a(n) = 10*a(n-2)-10*a(n-4)+a(n-6). G.f.: -(x^4+7*x^3-9*x^2+7*x+1) / ((x-1)*(x+1)*(x^4-9*x^2+1)). [_Colin Barker_, Jan 20 2013] %e A221367 F(1/2*(9 - sqrt(77)) = 1.12519 81018 34502 81936 ... = 1 + 1/(7 + 1/(1 + 1/(77 + 1/(1 + 1/(700 + 1/(1 + 1/(6237 + ...))))))). %e A221367 F({1/2*(9 - sqrt(77)}^2) = 1.01282 05391 65421 74656 ... = 1 + 1/(77 + 1/(1 + 1/(6237 + 1/(1 + 1/(492800 + 1/(1 + 1/(38925117 + ...))))))). %e A221367 F({1/2*(9 - sqrt(77)}^3) = 1.00142 65335 27667 24640 ... = 1 + 1/(700 + 1/(1 + 1/(492800 + 1/(1 + 1/(345946300 + 1/(1 + 1/(242853811200 + ...))))))). %Y A221367 Cf. A018193, A057081, A174500 (N = 4), A221364 (N = 3), A221365 (N = 5), A221366 (N = 7). %K A221367 nonn,easy,cofr %O A221367 0,2 %A A221367 _Peter Bala_, Jan 15 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE