# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a220186
Showing 1-1 of 1
%I A220186 #42 Nov 01 2022 17:03:34
%S A220186 0,8,800,78408,7683200,752875208,73774087200,7229107670408,
%T A220186 708378777612800,69413891098384008,6801852948864020000,
%U A220186 666512175097575576008,65311391306613542428800,6399849835873029582446408,627119972524250285537319200
%N A220186 Numbers n >= 0 such that n^2 + n*(n+1)/2 is a square.
%C A220186 Equivalently, numbers n such that triangular(2*n) - triangular(n) is a square.
%H A220186 Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
%F A220186 a(n) = A098308(2*n-2).
%F A220186 a(1) = 0, a(2) = 8, a(3) = 800 and a(n) = 99*a(n-1)-99*a(n-2)+a(n-3) for n>3. - _Giovanni Resta_, Apr 12 2013
%F A220186 G.f.: -8*x^2*(x+1) / ((x-1)*(x^2-98*x+1)). - _Colin Barker_, May 31 2013
%F A220186 a(n) = (49+20*sqrt(6))^(-n)*(49+20*sqrt(6)-2*(49+20*sqrt(6))^n+(49-20*sqrt(6))*(49+20*sqrt(6))^(2*n))/12. - _Colin Barker_, Mar 05 2016
%F A220186 a(n) = 8*A108741(n). - _R. J. Mathar_, Feb 19 2017
%t A220186 a[n_]:=Floor[(1/12)*(49 + 20*Sqrt[6])^n]; Table[a[n],{n,0,10}] (* _Giovanni Resta_, Apr 12 2013 *)
%t A220186 LinearRecurrence[{99,-99,1},{0,8,800},20] (* _Harvey P. Dale_, Nov 01 2022 *)
%o A220186 (C)
%o A220186 #include