# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a219043 Showing 1-1 of 1 %I A219043 #27 Nov 12 2023 11:35:06 %S A219043 3,4,9,13,28,45,46,184,285,688,697,1257,1785,2368,3721,7444,51613 %N A219043 Numbers k such that 3^k - 22 is prime. %C A219043 a(18) > 2*10^5. - _Robert Price_, Oct 18 2013 %e A219043 3^3 - 22 = 5 (prime), so 3 is in the sequence. %t A219043 Do[If[PrimeQ[3^n - 22], Print[n]], {n, 10000}] %o A219043 (PARI) is(n)=isprime(3^n-22) \\ _Charles R Greathouse IV_, Feb 17 2017 %o A219043 (Python) %o A219043 from sympy import isprime %o A219043 def ok(n): return isprime(3**n - 22) %o A219043 print([m for m in range(700) if ok(m)]) # _Michael S. Branicky_, Mar 04 2021 %Y A219043 Cf. Sequences of numbers k such that 3^k + m is prime: %Y A219043 (m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959, %Y A219043 (m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347, %Y A219043 (m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039, %Y A219043 (m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043, %Y A219043 (m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047, %Y A219043 (m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime. %K A219043 nonn,more %O A219043 1,1 %A A219043 _Nicolas M. Perrault_, Nov 10 2012 %E A219043 a(17) from _Robert Price_, Oct 18 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE